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This paper presents a low-complexity, effective variable frame rate (VFR) analysis method that conducts frame 
selection on the basis of a posteriori signal-to-noise ratio (SNR) weighted energy distance. It has two 
characteristics. First, energy distance (instead of cepstral distance) is used to make it computationally efficient 
and thus enable a finer granularity in search as compared with cepstral distance criterion. Secondly, SNR 
weighting is used to emphasize the reliable regions in noisy speech signals. In terms of frame selection, it is 
experimentally found that the method is able to assign a higher frame rate to fast changing events such as 
consonants, a lower frame rate to steady regions like vowels and no frames to silence, even for very low SNR 
signals. The VFR method is applied to speech recognition in noisy environments to improve noise robustness. 
Being a method that takes effect in the time-domain, it is moreover combined with spectral- and cepstral-domain 
techniques to gain further improvement. Experiments are conducted on the Aurora 2 database, which is the TI 
digits database artificially distorted by adding different noises, and very encouraging results are obtained. 

1 Introduction 

Robustness against environmental noises is one of the most 
important challenges in automatic speech recognition 
research and development. In general, robustness methods 
aim at reducing the mismatches between the training and 
test speech signals through feature-domain or model 
domain methods. Feature extraction related methods 
include feature enhancement, distribution normalization 
and noise robust feature extraction. Feature enhancement 
attempts to clean noise-corrupted features, for example in 
spectral subtraction [1]. Distribution normalization reduces 
the distribution mismatches between training and test 
speech such as in MVA processing which consists of mean 
subtraction, variance normalization and auto-regression 
moving-average (ARMA) based filtering in the cepstral 
domain [2]. Noise robust features include improved Mel-
frequency cepstral coefficients (MFCCs) e.g. root-cepstrum 
[3] and new features e.g. variance based features [4].  
This work, however, investigates a different approach 
namely variable frame rate (VFR) analysis which is 
concerned with frame shift and selection, and yet has 
shown good performance in noise robustness [5].  
Fixed frame rate analysis is prevalent in contemporary 
speech recognition systems. A typical feature extraction 
processing of such systems computes speech features using 
a 25 ms frame length and a 10 ms frame shift. This fixed 
frame rate processing is based on the assumption that 
speech signals exhibit quasi-stationary behavior in a short 
time. This assumption is, however, questionable for rapidly 
changing speech events such as plosives. In addition, fixed 
frame rate analysis treats noise and speech segments 
equally.  
On the contrary, variable frame rate analysis selects frames 
according to signal characteristics and has been applied to 
speech recognition for several purposes [6]. First, it is used 
for efficient speech recognition by discarding redundant 
frames while maintaining recognition performance [7], [8]. 
Given the rapid and steady progress in computing, this is of 
less interesting today. Secondly, VFR analysis is exploited 
to improve acoustic modeling by capturing fast changes in 
the spectral characteristics, and improved performance has 
been observed on a nasal database [9]. Thirdly, it is used for 
improving noise robustness [9]-[12] and this will be the 
focus of the present paper. Finally, a recent work applies 
VFR to distributed speech recognition (DSR) to increase 
robustness against transmission errors and compress speech 
data for low-bit-rate feature transmission [13].  

Most of VFR analysis methods calculate cepstral 
coefficients (used for distance measure) for each frame first 
and select frames afterwards, as those presented in [7-9]. 
This kind of process is obviously waste of computing 
resources. In contrast, the method presented in [11] uses 
delta logarithmic energy as the criterion for determining the 
size of the frame step on the basis of a sample-by-sample 
search. In [12] the authors present a posteriori SNR 
weighted energy based VFR analysis for speech 
recognition, which also selects frames prior to calculating 
cepstral features. This paper extensively investigates its use 
for noise-robust speech recognition.  
Since VFR analysis takes effect in the time domain, it has a 
high potential to be combined with other methods including 
both feature- and model-domain methods. This work 
combines VFR analysis with feature enhancement and 
distribution normalization methods.  
This paper is organized as follows. Section 2 presents the a 
posteriori SNR weighted energy based VFR method. 
Section 3 conducts recognition experiments on noisy 
speech data and investigates the sensitivity of this method 
to varying parameters. Sections 4 and 5 present the 
combination of the method with spectral- and cepstral-
domain noise-robustness methods, respectively. Section 6 
concludes this paper.    

2 The a posteriori SNR weighted 
energy based VFR method 

The method conducts frame selection based on a posteriori 
SNR weighted energy. Its procedure is as follows [12]:  

1. Compute the a posteriori SNR weighted energy 
distance of two consecutive frames as  

)(|)1(log)(log|)( tSNRtEtEtD post⋅−−=           (1) 

where )(log tE  is the logarithmic energy of frame t, 
and )(tSNRpost  is the estimated a posteriori SNR 
value of frame t by using a 1 ms frame shift and a 25 
ms frame length.  

2. Compute the threshold T for frame selection as  

)(log)( noiseEftDT ⋅=                                          (2) 

where )(tD  is the average weighted distance over a 
certain period and )(log noiseEf  is a sigmoid 
function of noiseElog  to allow a smaller threshold 
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and thus a higher frame rate for clean speech. The 
sigmoid function is defined as  

)13(log2
2

1 1
)(log −−+

+=
noiseEnoise e

Ef αα                     (3) 

where the constant of 13 is chosen so that the 
turning point of the sigmoid function is at a 
posteriori SNR of between 15 and 20 dB. 
Parameters 21  and αα  are used to determine average 
frame rate. 

3. Update the accumulative distance: )()( tDtA =+  on 
a frame-by-frame basis and compare it against the 
threshold T: If TtA >)( , the current frame is 
selected and )(tA  is reset to zero; otherwise, the 
current frame is discarded. If the current frame is not 
the last one, the search continues, that is, go back to 
step 1.  

Throughout this work, the )(tSNRpost  is estimated as the 
logarithmic ratio of the energy of frame t, E(t), to the 
energy of noise, noiseE . The use of a posteriori SNR, rather 
than a priori SNR, avoids the problem of assigning zero or 
negative weights to frames with dBSNRprio 0≤  and 
subsequently discarding them due to their non-positive 
weights. As such, the a posteriori SNR weight for noise-
only frames will be theoretically equal to 0 dB, which 
serves as an implicit, soft VAD; negative a posteriori SNR 
values may still appear in practice and are then set to zero 
to prevent negative weights. In this work noiseE  for 
calculating )(tSNRpost  and noiseElog  for calculating T  are 
both simply estimated by averaging the first 10 frames of 
an utterance which are considered noise only. The average 
weighted distance )(tD  is calculated over one utterance; in 

practice, )(tD  calculated over preceding segments can be 
used and it is then updated frame-by-frame based on a 
forgetting factor.  
As only the logarithmic energy and the a posteriori SNR 
value are calculated for each frame, the VFR method has a 
very low complexity as compared with the existing 
methods described. 

3 Experiments on noise robustness  

The proposed VFR method is applied to speech recognition 
in noisy environments.  

3.1 Experimental setup 

Experiments are conducted on the Aurora 2 database [14], 
which is the TI digits database artificially distorted by 
adding noise and using a simulated channel distortion. 
Whole word models are created for all digits using the HTK 
recognizer [15]. Each of the whole word digit models has 
16 HMM (hidden Markov model) states with three 
Gaussian mixtures per state. The silence model has three 
HMM states with six Gaussian mixtures per state. A one 
state short pause model is tied to the second state of the 
silence model. 

The word models used in the experiments are trained on 
clean speech data. The test data is Test Set A including 
clean speech and noisy speech corrupted by four noise 
types: “Subway”, “Babble”, “Car”, and “Exhibition” with 
SNR ranging from 0 to 20 dB.  

3.2 Baseline methods  

The fixed frame rate (FFR) baseline uses a fixed 10 ms 
frame shift as implemented in the ETSI DSR standard [16]. 
The referenced VFR methods include the accumulative, 
energy weighted cepstral distance VFR [9], the entropy 
based method [10] and the delta energy based method [11].  
In [9] a cumulative, energy weighted cepstral-distance is 
proposed for frame selection. The distance of adjacent 
MFCC vectors is calculated as 

 )5.1/)(log)((log)1,()( tEtEttDtD −⋅−=                 (4) 

where )1,( −ttD  is the Euclidean distance between frame t 
and frame t-1, )(log tE  is the logarithmic energy of frame t 

and )(log tE  is the mean of )(log tE  over a certain period. 
Based on the distance, the threshold is then computed as  

)(tDT ⋅=α                                                      (5) 

where )(tD  is the mean of the weighted distance )(tD  
over a period, and α  is a factor that determines the average 
frame rate. A frame is selected if the distance 

∑= )()( tDtA  accumulated since last-selected-frame is 
greater than the threshold T. The method has demonstrated 
good performance on speech data with low signal-to-noise 
ratios, and has shown to be superior to the methods 
presented in [7] and [8] according to the experiments 
conducted in [6].  
With the same motivation, the entropy-based VFR analysis 
is proposed in [10]. In addition to the MFCCs calculation 
used in [9], here a 30 ms rectangular-window length and a 
15 ms window shift are used for calculating local entropy 
which is then compared with three different thresholds for 
frame selection, introducing a high computational cost.  

3.3 Experimental results 

The word error rate (WER) results for a number of methods 
are presented in Fig. 1. In the figure, Cep-VFR ( 8.6=α ) 
refers to the accumulative, energy weighted cepstral 
distance VFR  with the same settings as in [9], while Cep-
VFR ( 0.5=α ) uses a smaller α  value to select more 
frames for the purpose of better matching the frame rate 
with the applied HMMs and in this work this setting gives 
the best recognition performance. The Cep-VFR method 
with both settings unfortunately does not give an acceptable 
performance for clean speech. The reason is that the energy 
weight 5.1/)(log)(log tEtE −  as given in Eq (4) results in 
no frames output for the first part of speech right after the 
silence which is often a short-duration consonant. 
The results for both Cep-VFR+VAD and Entropy-
VFR+VAD presented in Fig. 1 are cited from [10] and they 
show that the Cep-VFR method combined with VAD (Cep-
VFR+VAD) gives a good performance for both clean and 
noisy speech, and that the entropy method combined with 
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VAD (Entropy-VFR+VAD) gives a even better recognition 
performance for noisy speech but a bit worse performance 
for clean speech.  
The energy based VFR (LogE-VFR) [11] also gives a good 
performance on noisy speech, though worse than the 
previous two. Finally the proposed method (SNR-LogE-
VFR) with 5.4 and 5.6 21 == αα  demonstrates a slightly 
improved performance over the Entropy-VFR method 
combined with VAD, yet the proposed method has 
substantially lower complexity, no support from VAD 
(need for a rough estimation of Enoise but no explicit need 
for a VAD) and less parameters to tune (for example, the 
entropy method compares against three thresholds).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. Percent WER across the methods for Test Set A: 
upper figure for 0-20 dB speech and lower figure for clean 
speech.   

3.4 Parameters for adjusting frame rate 

The key parameters in the a posteriori SNR weighted 
energy based VFR method are 21  and αα , which are used to 
control average frame rate of the front-end. To investigate 
the sensitivity of the method with regard to the changes of 

21  and αα , a number of experiments have been conducted 
and recognition results are shown in Fig. 2.  
The results verify that changing the two parameters around 
their default settings only has a marginal effect on the 
recognition performance. It has even less influence on clean 
speech. The WERs are the same for clean speech (i.e. 
1.6%) when changing 2α  from 4.0 to 5.0 with a fixed value 
of 5.61 =α ; they are also the same when changing 1α  from 

6.3 to 6.7 with a fixed value of 5.42 =α , while it is 1.5% 
for 0.71 =α  and 2.0% for 0.61 =α .    

 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 

(b) 
Fig. 2. Percent WER for SNR-LogE-VFR for 0 ~ 20 dB 
speech in Test Set A: (a)  1α  has a fixed value of 6.5 and 
the value of 2α  changes; (b)  2α  has a fixed value of 4.5 
and the value of 1α  changes.  

3.5 Frame selection 

Frame selection is in the core of VFR analysis. Figure 3 
compares the a posteriori SNR weighted energy based VFR 
method with the accumulative, energy weighted cepstral 
distance VFR in terms of frame selection. The testing 
utterance is English digit string “five nine four” and has an 
a priori SNR of 0 dB.   

 

 

 

 

 
Fig. 3. Frame selection for English digits “five nine four” 
(0 dB): waveform (the first panel), wideband spectrogram 
(the second panel), narrowband spectrogram (the third 
panel), frames selected by the referenced method [9] with 
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0.5=α  (the fourth panel), frames selected by the proposed 
method (the fifth panel) and the corresponding clean speech 
waveform as a reference (the last panel).    

From the figure, it is evident that the a posteriori SNR 
weighted energy based method is able to assign a higher 
frame rate to fast changing events such as consonants, a 
lower frame rate to steady regions like vowels and no 
frames to silence, even for very low SNR signals. 

4 Combination with spectral-domain 
method  

Since VFR analysis takes effect in the time domain, it has a 
high potential to be combined with other methods [5]. VFR 
analysis emphasizes speech transitions and deemphasizes 
silence and vowel regions based on distance measures. 
However, for noisy speech the measurement can be largely 
affected by additive noise. We propose to use speech 
enhancement methods to de-noise speech first and apply 
VFR analysis secondly. The purpose of applying speech 
enhancement methods is to both improve the frame 
selection and to enhance the speech.  
Based on the assumption that speech cannot occupy a 
frequency bin all the time, the minimum statistics noise 
estimation (MSNE) method [17] treats the minimum value 
of each frequency bin in the power spectral density domain 
within a long-enough window as the noise estimate of the 
current frame. This method gets rid of VAD and is capable 
of tracking noise changes even within speech segments. 

4.1 Recognition results 

Table 1 shows the results for the MSNE based spectral 
subtraction (MSNE-SS) and its combination with the a 
posteriori SNR weighted energy based VFR. It is observed 
that the combination of the proposed SNR-LogE-VFR and 
MSNE-SS achieves a 17.1% absolute WER reduction. 
Interestingly, the improvement of the combined method is 
greater than the summation of the gains obtained by 
applying the two methods individually (11.1% for SNR-
LogE-VFR and 5% for MSNE-SS) – it is often the opposite 
way when combining two methods. This justifies the dual 
contributions of speech enhancement when combined with 
the VFR method. 
 

 
0 ~ 20 dB 

Clean
Subway Babble Car Exhibit. Average

MSNE-SS 31.9 43.0 25.6 34.1 33.7 1.5 
MSNE-SS + 
SNR-LogE-
VFR  

19.8  26.3 18.3 21.9 21.6 1.3 

Table 1 Percent WER for MSNE-SS and its combination 
with the VFR for Test Set A 

5 Combination with cepstral-domain 
method 

The joint time- and spectral-domain method presented in 
the previous section is further combined with the MVA 
(cepstral mean subtraction, variance normalization and 
ARMA filtering) method [2]. Here, the MVA processing is 
applied to the static MFCC features only.  

5.1 Recognition results 

The results for combining SNR-LogE-VFR, MSNE-SS and 
MVA are given in Table 2. The performance for the MVA 
is cited from [2]. The results show that the combination 
with MVA further improves the performance and suggest 
that the VFR method is orthogonal to other methods. The 
method is expected to benefit from combination with other 
advanced methods as well. 
 

 
0 ~ 20 dB 

Clean
Subway Babble Car Exhibitio

n Average

MVA - - - - 24.8 1.0 
MSNE-SS + 
MVA+ 
SNR-LogE-
VFR 

20.3 19.2 16.6 20.1 19.0 1.4 

Table 2. Percent WER across the methods for Test Set A  

5.2 Analysis of recognition error types 

In [5] it was revealed, by analyzing recognition error types, 
that VFR analysis reduces insertion errors significantly. 
Table 3 shows the same analysis for the a posteriori SNR 
weighted energy based VFR and its combination with 
MSNE and MVA methods.  
 

5 dB 
 H D S I 
Baseline 1982 260 1066 1095
SNR-LogE-VFR 2202 359 747 134 
MSNE-SS+SNR-LogE-VFR 2279 289 740 216 
MSNE-SS + MVA+ 
SNR-LogE-VFR 

2551 411 346 42 

Clean 
 H D S I 
Baseline 3285 10 13 10 
SNR-LogE-VFR 3268 6 34 18 
MSNE-SS+SNR-LogE-VFR 3265 12 31 4 
MSNE-SS + MVA+ 
SNR-LogE-VFR 

3260 14 34 5 

 

Acoustics 08 Paris

2537



 

Table 3. Number of correct words (H), deletions (D), 
substitutions (S) and insertions (I) on clean speech and 
speech corrupted by “Babble” noise (in total 3308 words). 

It is particularly interesting to study the 5 dB case. Number 
of correct words steadily increases and number of 
substitutions steadily decreases after applying VFR, 
MSNE-SS and MVA. Number of insertions decreases 
significantly and number of deletions increases a bit after 
applying VFR and MVA. 

6 Conclusion 

This paper has studied the variable frame rate analysis 
method that relies on the accumulative, a posteriori SNR 
weighted energy distance for frame selection. In terms of 
frame selection, the method is able to assign a higher frame 
rate to fast changing events such as consonants, a lower 
frame rate to steady regions like vowels and no frames to 
silence, even for very low SNR signals. The method was 
applied to noise-robust speech recognition and was further 
combined with spectral- and cepstral-domain methods. 
Encouraging results were obtained.  
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