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The macroscopic elastic properties of two composites (Duraluminium/air and Duraluminium/tungsten
carbide (WC)) have been calculated using periodical homogenisation method from the elastic properties
of each phase (measured by high frequency acoustic microscopy). In order to check the validity of
such a modelisation, acoustical resonant spectroscopy has been applied. Here the free resonance of
a parallelepiped sample allowed to measure the frequency of mechanical vibration by means of laser
interferometer. Thanks to an inverse computation, this paper presents the full elastic characterization
of the two composite samples and comparisons with those predicted. Here, experimental results are in
good agreement for the Duraluminium/air sample but differences appear in transversal properties for
the Duraluminium/WC one.

1 Introduction

In order to prepare the fourth generation of nuclear civil
power plants, many nuclear fuel are developed in nuclear
centers. Many of these new fuels are ceramic/metal or
ceramic/ceramic composites as listed in [1]. In such
structures, thermo-mechanical effects due to complex
phenomena (source of heat, thermal expansion, swelling,
densification,...) has to be simulated to study the fuel
behavior in reactor.
For mechanical aspect, finite element simulation are gen-
erally used but they are very time and memory con-
suming. Indeed, one needs to use very sharp meshes
to obtain accurate results. Consequently, with complex
structures such as porous materials or inhomogeneous
composites, parametric studies or fuel simulations on
long time of irradiation (many years) become difficult
and sometimes impossible. So, effective properties of
these materials are useful to assess the structure behav-
ior under irradiation.
The attention is focused one the elastic properties of
test samples which are closed to the new future compos-
ite fuels. Here, samples are rectangular parallelepipeds
(Duraluminium) with cylindrical ceramic parallel fibers
(WC). Previous works, based on homogenisation method
[2], allowed to deduce effectives properties from each
phase of the composite and it is here presented in the
first section. In a second section, authors developed an
experimental setup based on free resonant ultrasound
spectroscopy in order to characterize the full elastic prop-
erties of samples and compare it to those predicted by
homogenisation.

2 Sample properties

The major characteristics of the sample, Fig.1, manufac-
tured by the Society Rolland Bailly (Besançon, France)
are listed bellow:

• Duraluminium/Air sample (#1):
Size : 1cm×1cm×1cm
Number of holes : 64
Holes size : 1mm
Volume fraction of air : 50.26%
Matrix : Duraluminium
Durlauminium Density : 2740kg/m3

Sample density : 1377kg/m3

• Duraluminium/WC sample (#2):
Size : 1cm×1cm×1cm
Number of holes : 64
Holes size : 1mm

Volume fraction of air : 50.26%
Matrix : Duraluminium
Durlauminium Density : 2740kg/m3

Holes filled with tungsten carbide (WC) rods
WC density : 14.308kg/m3

Sample density : 8569kg/m3

Figure 1: Schematic representation of samples.

2.1 Homogenisation

The determination of elastic effective properties is based
on a homogenisation method [2]. The composite is a pe-
riodical geometry and it so possible to study it with a
Representative Elementary Volume (REV), presented in
Fig.2. The mechanical principle, equilibrium and com-

Figure 2: Representative Elementary Volume.

patibility equations lead to:

σi = Ci : εi, (1)
divz(σ) = 0, (2)

ε = 1
2 (gradz(u) + gradT

z (u)), (3)

where i represents each phase, C the elastic constants
and ε the strain. The main idea of the homogenisation
method is to decompose the displacement using the pe-
riodical displacement on the REV. So, z is substituted
by x, the large scale term and y, the periocidal term as
below:

z = x + ωy, (4)
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where ω is a scaling factor. Then the displacement can
be written as:

~u =
+∞∑

i=0

ωi ~ui. (5)

Mean values taken on the REF lead to the effective elas-
tic constants of the composite.

2.2 Acoustic microscopy

Using acoustic microscopy, two modes are possible :
imaging or signature [3]. In the latter case, from me-
chanical waves (generated by a piezoelectric crystal) fo-
cused, the sensor is defocused toward the sample and the
reflected signal is acquired. Interference phenomena be-
tween the specular ray (normal incidence) and three sur-
face waves (longitudinal, transverse and Rayleigh waves)
are then created. The reflected signal is pseudo periodic
and the velocities of each surface waves can be estimated
with the following relation:

Vsw =
Vcf√√√√1−

(
1− Vcf

2f∆zsw

)2
, (6)

where Vcf is the ultrasonic velocity in the coupling fluid
between the sample ant the sensor, Vsw the velocity of
the surface wave, f the frequency and ∆zsw the pseudo
period. An example of acoustic signature for the matrix
measurement is presented Fig.3. The Young modulus

Figure 3: V(z) acquired in the matrix.

(E) and shear modulus (G) can be calculated by:

E = ρV 2
T

3V 2
L − 4V 2

T

V 2
L − V 2

T

, (7)

G = ρV 2
T , (8)

where ρ is the density, VT the transversal wave and VL

the longitudinal one.
Under the assumption that the Poisson coefficient is
closed to 0.3, the elastic modulus of Duraluminium is
evaluated to 70±5 GPa, which is good agreement with
literature [3]. For fibers of WC, the acoustic signature
leads to an elastic modulus of 580±5 GPa

2.3 Results

Table 1 shows the results of homogenisation for the Du-
raluminium/Air sample (# 1) and the Duraluminium/WC

one (#2) calculated from each phase properties mea-
sured by acoustic microscopy.

Properties Units Sample #1 Sample #2

Ex,Ey GPa 22.7 182

Ez GPa 36.1 326

Gxy GPa 2.4 51

Gxz,Gxz GPa 9 62

Nuxy,Nuxz 0.122 0.305

Nuyz 0.188 0.153

Table 1: Predicted properties of elastic constants from
homogenisation method for the two samples

The aim of the next section is to compare theses results
to an experimental characterization. Previous work [2]
based on resonant ultrasound spectroscopy shows exper-
imental comparison. In this case samples are excited
with glued ceramic piezoelectrics on both faces. All
modes of the free vibration of sample are not revealed
and the vibration is the result of the system {sample +
piezoelectric ceramic}. That’s why, authors present a
new experimental setup which allows to study the free
sample vibration.

3 Free resonant ultrasound spec-
troscopy

An experimental setup allows here to measure the dif-
ferent frequencies of free vibration of cubes. An inverse
resolution based on Simplex methods [4] allows then to
deduce experimental elastic constants of sample.

3.1 Modeling of the resonant vibration
modes of rectangular parallelepipeds

Let’s consider a rectangular parallelepiped with char-
acteristic dimensions L1 = A

2 , L2 = B
2 , L3 = C

2 . The
material characteristics are the density ρ and elastic con-
stants Cijkl. The Lagrangian of this body of volume v
is [5, 6]:

L =
1
2

∫∫∫

v

ui,jCijkluk,l − ρω2uiuidV, (9)

where ω is the angular frequency. A eiωt time depen-
dence is assumed for mechanical. In a variational ap-
proach, any mechanical displacement ui → ui + δui

yields a variation of the Lagrangian: L → L + δL.
Hamilton’s principle leads us to look for the Lagrangian
stationary points at which δL = 0. This determines a
motion equation whose solutions correspond to the free
vibrations of the body. In the Rayleigh-Ritz method [5],
the mechanical displacements are expressed as a linear
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combination of functions:

ui =
N∑

p=1

apψp. (10)

The ψp, p = 1, . . . , N, functions are chosen to be or-
thonormal. To determine ap constants, an eigenvalue
problem is expressed by substituting expressions (10)
into equation (9), and by the condition of the station-
ary Lagrangian:

Γa = ρω2a, (11)

a = (a1, a2, . . . , aN )t are unknown vectors. Γ is called
elastic interaction matrix. It depends on the shape and
on the mechanical properties of the body and its de-
scription is given in [6]. The determination of the eigen-
values ρω2 and the eigenvectors a allows the resonant
frequency ω and the modal elastic displacements u to
be identified.
As pointed out in the literature [5, 6] a Legendre polyno-
mial basis is well adapted to describe the behavior acous-
tical fields inside parallelepipeds. As a result, the solu-
tions of the eigenproblem (11) are sought in the form:

ψp =
1√

L1L2L3

Pλ

(
x1

L1

)
Pµ

(
x2

L2

)
P ν

(
x3

L3

)
ei,

(12)
where the pth basic functions ψp is defined by the triplets
(λ, µ, ν). Pα(x) is the Legendre function of order α and
ei is the unit displacement vector in the direction xi.
Note that to accelerate computation time, symmetry
consideration can be employed to split the matrix Γ and
enhance the eigenvalue resolution [7].

3.2 Experimental setup

Several methods already have been used to perform acous-
tic spectroscopy on parallelepipeds. They generally in-
volve pinducers or ultrasonic transducers positioned at
the sample corners [8, 9]. Here, due to the fact that
the samples are not too small, they are excited by one
piezoelectric ceramic where its own resonance is about
250kHz. Velocity measurements at the surface of the
sample are carried out through a laser vibrometer (Poly-
tech OFV-505) so as to detect resonance frequencies as
well as the associated mode shapes. The interferometer
is positioned at 50 cm from the sample leading to a 20
µm focal area. Fig.4 shows a schematic presentation of
the experimental setup. Note that in order to maintain
the sample without changing limit conditions a piece
of cotton holds the upper corner. The piezoelectric ce-

Figure 4: Experimental setup.

ramic is directly linked to a frequency generator. Then,
a frequency sweep allows (when the amplitude response

of the velocity is maximum) to note the different reso-
nance of the cube.
Table 2 shows the free resonance measured for the two
samples.

Sample #1 Sample #2

Frequency (kHz) Frequency (kHz)

72.2 101.6

88.9 126.4

114.6 138.9

120.2 166.0

127.0 190.6

156.8 207.6

157.9 216.0

161.2 248.8

Table 2: First measured free resonance frequencies of
the two tested sample

3.3 Inverse problem and identification of
elastic constants

To identify the material characteristics, a fit procedure
has been developed. Modifying the Cijkl tensor enables
the computed resonant frequencies to be matched to the
measured data. The fit (based on the simplex routine
[4]) is carried out in order to determine the elastic con-
stants by minimize the distance ∆mc between the ex-
perimental resonance frequencies f

(i)
measured and the com-

puted vibrations f
(i)
computed:

∆mc =

∑

i

∣∣∣f (i)
mesured − f

(i)
computed

∣∣∣
∑

i

f
(i)
measured

(13)

Table 3 shows the result of elastic identification for the
two samples. Here, results are given with the Cijkl no-
tation and converted into E, G and Nu modulus to
compare with theoretical results.

3.4 Discuss

One can see on Table 3 that for the Duraluminium/Air
sample, experimental characterization is in good agree-
ment with those computed by homogenization method
(Table 1). This can be checked by Table 4 which shows
that difference between measured frequencies and com-
puted frequencies after fitting is less than 0.5%.
For the Duraluminium/WC sample, the fit procedure
has been more difficult to realize as one can see on
Table 4. First frequencies computed are not all mea-
sured due to low signal and the difference reach 4.5% for
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Properties Units Sample #1 Sample #2

Elastic C11 GPa 22.3 130.4

constants C33 GPa 49.1 373.1

C12 GPa 3.7 40.0

C13 GPa 5.3 84.2

C44 GPa 2.7 41.9

C66 GPa 8.8 66.4

Elastic Ex GPa 21.1 106.7

modulus Ez GPa 36.9 270.0

Gxy GPa 2.7 41.9

Gxz GPa 8.8 66.4

Nuxy 0.137 0.195

Nuyz 0.206 0.180

Table 3: Experimental elastic properties of sample #1
and #2

the first mode identified. It corresponds to a torsional
mode as it is presented in Fig.5 computed on 106.2kHz
while the measured one corresponds to a lower frequency
(101.6kHz) which allows to deduce that shear properties
are softer than those presented in Table 3. However, re-

Figure 5: Computed modal shape for the 106.2 kHz
mode (Sample #2).

sults in Table 3 are computed from a global fit and show
that the most discrepancy appears for the value of Ex

(= Ey) where the difference is about 40%. This differ-
ence was already showed in [2] and should be explained
by a fiber/matrix debonding.

4 Conclusion

In this paper, the ultrasound spectroscopy has shown
that homogenisation for composite is a good method to
compute effective elastic properties due to the fact that

Sample #1 Sample #2

Measured Computed Measured Computed

72.2 72.0 101.6 106.2

88.9 88.4 126.4 126.0

114.6 114.7 138.9 137.3

120.2 121.0 166.0 167.8

127.0 127.0 190.6 188.2

156.8 156.7 207.6 204.6

157.9 157.6 216.0 216.8

161.2 161.2 248.8 250.4

∆mc = 0.23% ∆ = 1.35%

Table 4: Comparison of measured and computed free
resonance after fitting (in kHz)

measured constants are in good agreement with those
predicted. A discrepancy can appear when there is a
partial debonding between phase. In order to study this
particularity, future works will focus on a full scan of the
vibration. Indeed, the laser interferometer used here has
a 20 µm focus area which allows to point one fiber indi-
vidually and should show if vibration has a particularly
aspect. Furthermore, authors have not measured here
all resonances and the measurement of modal shapes will
bring more precision on computation and fit process.
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