
Blind source separation and sound source localization on
time-frequency domain considering time lag information

Shogo Ueda, Fumio Sasaki, Osamu Tanaka and Masahito Yasuoka

Department of Architecture, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku,
162-8601 Tokyo, Japan
shogo 0604@yahoo.co.jp

Acoustics 08 Paris

3327



The blind source separation and sound source localization based on independent component analysis on time-
frequency domain considering time lag information between source signals and observation signals are 
conducted. The formulation based on the independency of time-frequency domain and the linearity of source 
signal is presented. The method which can be conducted not only the separation of source signals but also the 
specification of location of source signals is proposed through the consideration of time lags. Using this method, 
it can be analyzed even if observation signals include an intermittent noise, under the assumption of some 
independency of source signals. First of all, the number of source signals is specified through the quotient of 
complex valued time-frequency information of arbitrary two observation signals. Next, the locations of source 
signals are specified using the relationship of relative time lags between source signals and observation signals. 
Then, the source signals are obtained by use of the Fourier Transform. The numerical test is conducted to 
confirm our method, and then the locations of source signals and source signals are obtained by high accuracy. 

1 Introduction 

The cocktail party effect is known as auditory ability to 
distinguish particular sound and voice among other sounds 
and background noises. The cause of the cocktail party 
effect is tried solving from various fields and various points 
of view. The blind source separation problem corresponds 
to a way to enable computers to solve the cocktail party 
effect.  
The methods for the specification of the number of source 
signals and the separation of the source signals are 
proposed using time-frequency information of source 
signals as a technique of blind source separation [1], [2]. In 
the paper [3], [4], the specification of the number of source 
signals and the separation of source signals are conducted 
by using wavelet analysis assuming some kind of 
independency for time-frequency information of source 
signals. However, in these papers, the time lags between 
source signals and observation signals are not considered. 
In this paper, the method which can be conducted not only 
the separation of source signals but also the specification of 
location of source signals is proposed through the 
consideration of time lags. Moreover, the numerical test is 
conducted to confirm our method. 

2 Formulation 

2.1 Assumption of Independency of Time-
Frequency Information 

Let s(t) be a N dimension real valued vector function of 
source signal data sj(t) ( 1 ≤ j ≤ N ) 

T
Nj tststst ))(,),(,),(()( 1 ⋅⋅⋅⋅⋅⋅=s .  (1) 

Let x(t) be a M dimension real valued vector function of 
observation data xk(t) ( 1 ≤ k ≤ M ) 

T
Mk txtxtxt ))(,),(,),(()( 1 ⋅⋅⋅⋅⋅⋅=x .  (2) 

Where we assume M ≥ N. 
Let A=(akj) ( 1 ≤ k ≤ M, 1 ≤ j ≤ N ) be a damping matrix, 
and moreover ckj represents time lag between k component 
(xk) and j component (sj). Where akj and ckj are real values. 
In this paper, the reflections of source signals aren’t 
considered. The linearity is assumed between xk (t) and sj 
(t), on the free sound field such that 

)1()()(
1

Mkctsatx
N

j
kjjkjk ≤≤−=∑

=
　　 . (3) 

Here, x(t) is only known data, and A, ckj, s(t) are all 
unknown data. 
Let S(t,ω) be a time-frequency information vector of source 
signal vector s(t) and be a complex valued vector function. 
In this paper, continuous wavelet transform of which 
integral kernel consists complex wavelet is adopted to 
obtain S(t,ω). Therefore, time-frequency information of 

)( kjj cts −  can be represented by the form ),( ωkjj ctS −  
which is only the time shift on time-frequency domain. 
The independency of time-frequency information of 

),( ωkjj ctS −  is assumed as follows. 
Let Ekj be the set of time-frequency domain as  

,0),(|),{( ≠−= ωω kjjkj ctStE and )( ji ≠∀ s.t. }0),( =− ωkij ctS .
        (4) 

Assumption 1 }{φ≠kjE  and measurable 
Measurable means that Ekj has some area on time-frequency 
domain. The assumption 1 is roughly explained as follows. 
The concept of the assumption 1 is illustrated in Fig.1. 
Where, we set 4=N  in this figure. This shows that the 
time-frequency information Xk (t,ω) of the observation 
signal xk (t) is represented a mixture of four source signals 

),( ωkjjkj ctSa −  (1 ≤ j ≤ 4). Assumption 1 means that 
independent domains Ekj of ),( ωkjjkj ctSa −  which doesn’t 
overlap each other exist on every k and j. 
 

 
Fig.1 Illustration of independent domains Ekj (1 ≤ j ≤ 4)      

on Xk (t,ω). 

Let kjE~  be a time shift of Ekj to kjc− . That is, kjE~  is shifted 
Ekj by time direction kjc− . And, Let Gj be 
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= .     (5) 

Assumption 2 }{φ≠jG  and measurable 
These assumptions make sense on general sound field. 
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2.2 Specification of the Number of Source 
Signals 

In this section, the specification method of the number of 
source signals (N) is shown. For lk,∀ ),1( Nlk ≤≤ , time-
frequency information Xk (t,ω) and Xl (t,ω) of observation 
signals xk (t) and xl (t) respectively can be represented 
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N

j
kjk ctSatX −= ∑

=
.  (6) 
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Then, complex valued quotient function Q(tk,tl,ω) is 
introduced and defined by 
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By the assumption of independency (Assumption 1), if 
kjEt ∈),~( ω , then  

),~(),~( ωω kjjkjk ctSatX −=    (9) 

and if ljEt ∈),ˆ( ω , then 

),ˆ(),ˆ( ωω ljjljl ctSatX −= .            (10) 

Moreover in this case, by the assumption of independency 
(Assumption 2), if jGtt ∈),ˆ(,),~( ωω 　 , and )(~ˆ

ljkj cctt －－=  
are satisfied, then 

  R∈=
lj

kj

a
a

ttQ ),ˆ,~( ω  (Real value).           (11) 

Therefore, if )(~ˆ
ljkj cctt −−=  is satisfied at least in the 

domain Gj, the quotient function Q takes same constant real 
value akj/alj. Because Q is complex valued function in 
general, when t~ , t̂  and ω  vary all time-frequency 
domain, and if the region that takes same constant real 
value has measurable(some area), the number of same 
constant real values coincides the number N of source 
signals. The possibility that the quotient function Q takes 
other real values still remain, but in that case, the existence 
of the region which has measurable is very rare. 
However, it is still uncertain which real values akj/alj 
correspond to the source signals. Here, we calculate the 
quotient function Q about each k component to make l 
component fix. If it can be possible to estimate independent 
domain Ekj on time-frequency domain, we can found the 
correspondence of them. First, we try memorizing Q(real 
value) and ),~( ωt  when the quotient function takes real 
value akj/alj, and mark every real value akj/alj on time-
frequency domain Xk (t,ω). Then, the marked areas of 
source signals, that is, independent domains Ekj are 
illustrated on time-frequency domain Xk (t,ω). If time lag ckj 
is not so large, then the domains Gj overlapped with each 
Ekj exist. In these circumstances, the real values prove to 
corresponding with the domain Gj. Then the problem which 
real values correspond to source signals is solved. 

2.3 Specification of the Location of 
Source Signals 

When Eq.(11) holds, then 

kjlj cctt －－ =~ˆ .             (12) 

It means that the relative time lags between the distance 
kj xs  and lj xs  is tt ~ˆ－ . Where kj xs  means the distance 

between the location of the source point sj and observation 
point xk. (In this paper, the source signals and the location 
of source points are represented the same symbol sj(t), sj 
respectively.) 
Therefore, when the source signal sj is fixed, and 
propagation velocity represents v (≒330 m/sec in case of 
sound), and let )~ˆ( ttvd jkl －= , then jkld  can be shown 

jklljkj dxsxs =－－－ .            (13) 

So, the relative distance djkl between kj xs  and lj xs  can be 
known. In the case of 2 dimensional space (3-dim), if three 
(four) relative distance can be known, the location of source 
signal is specified. 

2.4 Specification of Source Signals 

Let the constant matrix B be 

ljkjkjkj aabb == ,)(B ( l is fixed).         (14) 

The matrix B which is composed of bkj is specified at 2.2, 
and so is ckj at 2.3. 

Let )(~ ts j  be 

∑
=

=
N

j
kjjkjk ctsbtx

1
)(~)( － .            (15) 

Here, we rewrite Eq.(15) without no confusion as follows. 
  )(~)( kjctt －sBx = .             (16) 

The difference between )(ts  and )(~ ts  is a multiple of 
constant. The representation of Fourier domain of Eq.(16) 
is 

  ),(~̂)(ˆ ijcωω sBx = .             (17) 

Where the symbol  ^  means Fourier domain. 
The k –th component of the Eq.(17) is rewritten by 

∑
=

=
N

j
j

ci
kjk sebx kj

1
)(~̂)(ˆ ωω ω－ .            (18) 

The Eq.(18) is linear equation when ω  is fixed, therefore if 
each ω  is fixed, and solve the Eq.(18), then )(~̂ ωjs  

)1( Mj ≤≤  can be calculated. Finally, )(~ ts j  can be 
calculated by Inverse Fourier Transform ( 1−F ). 

  ][ )(~̂)(~ 1 ωjj sFts −= .             (19) 

In this paper, )(~ ts  can be calculated instead of )(ts . 
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3 Numerical Test 

3.1 Problem Setting 

Numerical test can be conducted to confirm our method. In 
this example, 2 dimensional space is assumed. The 
locations of source points ( 5=N ) and observation points 
( 5=M ) are illustrated in Fig.2. The propagation velocity 
sets 330 m/sec. The source signals are shown in Fig.3. The 
s1(t) and s2(t) are male voice in English. The s3(t) and s4(t) 
are female voice in English. The s5(t) is an traffic noise 
recorded at the avenue. Sampling frequency is 44100[Hz], 
total duration time is 11.88[sec], and number of total step is 
524288(=219). Damping matrix A is constructed inversely 
proportional to the distance between sj and xk. 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1240.01768.01414.00677.01000.0
0877.00698.03333.00808.01857.0
1213.00698.01085.02774.02425.0
3536.01394.01562.01240.02000.0
1414.01111.00614.00909.00720.0

A .       (20) 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

877.0591.1302.2745.0389.1
620.0629.0426.5889.0580.2
858.0629.0766.1051.3369.3
500.2236.1542.2364.1779.2
000.1000.1000.1000.1000.1

B .           (21) 

The relative time lag matrix ( l =1 ) is 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−
−−−
−−=

1324471230503521
57971017741831137
1577109439881306

56723013193931189
00000

RC .           (22) 

Where we write the entries of CR as lag step (clj － ckj) ×
44100 instead of actual (clj － ckj). The synthesized 
observation signals xk (t) are shown in Fig.4. 
 

 
[m] 

 : Source point ( sj ) 
 : Observation point ( xk ) 

 

Fig.2 The locations of source points ( 5=N ) 
and observation points ( 5=M ). 

 
Time[sec] 

 
Fig.3 Source signals ( 5=N ). 

 

 
Time[sec] 

 
Fig.4 Observation signals ( 5=M ). 

 
Complex mother wavelet which consists of Mayer wavelet 
(as real part) and Hilbert transform of Mayer wavelet (as 
imaginary part) is adopted to obtain time-frequency 
information of observation signals. 
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3.2 Specification of the Number of Source 
Signals 

From now, observation signals xk (t) and their locations are 
only known data. Fig.5 is a histogram of ),(),( ωω tXtX lk  
( 1=l ) that the quotient function takes real value. Five 
peaks can be seen in each histogram. Therefore, the number 
of source points can be estimated as 5(=N). The computed 
relative damping (bkj) and relative time lag (clj － ckj) 
correspond to the coordinate of Quotient and Time-shift of 
each peaks’ value in Fig.5. The computed relative damping 
matrix B~  and relative time lag matrix R

~C  is   

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

877.0591.1301.2745.0389.1
620.0628.0423.5889.0579.2
857.0628.0765.1049.3370.3
500.2236.1540.2364.1779.2
000.1000.1000.1000.1000.1

~B .           (23) 

 

 
Fig.5 Histgram of Xk (t,ω) / Xl (t,ω) (Real value). 
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RC .           (24) 

Compared with the components of matrix B (Eq.(21)), and 
B~ (Eq.(23)), there is an error of less than 0.06 %. 
Compared with the components of matrix CR(Eq.(22)) and 

R
~C (Eq.(24)), R

~C  is completely coincident with CR. 

3.3 Specification of the Location of 
Source Signals 

The relative distance djkl between kj xs  and lj xs  can be 
known after calculating relative time lag at section 3.2. 
Now, there are five observation points so that four relative 
distance djkl can be found by each source point. Fig.6 is 
hyperbolic curves from five source points described in djkl. 
In this case, a source point must be on four curves to reduce 
an error in calculation, though in the case of 2 dimensional 
space, it is enough to be on at least three curves. Therefore, 
each location of five source points is specified to compute 
the point of intersection. The result of identified source 
points is shown in Fig.7. It is very good accuracy. There is 
an error of less than 10 mm (0.07% of the max range of the 
x-y coordinate).  
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Fig.6 Hyperbolic curves to specify source points. 
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[m] 

       : Specification point ( sj ) 
: Observation point ( xk ) 

 
Fig.7 Specification of source points. 

3.4 Specification of Source Signals 

The relative damping matrix B~  has been computed at 
section 3.2, and the time lag matrix C~  ( kjc~ ) has been 
computed to specify the location of source points at section 
3.3. Namely, each of unknown variable except of )(~̂ ωjs  at 
Eq.(18) has turned out to be known. So )(~̂ ωjs  can be 
calculated to solve a linear Eq.(18) about every frequency. 
Therefore )(~ ts j  can be estimated by Inverse Fourier 
Transform of )(~̂ ωjs  in Eq.(19). 

However, the calculated source signals )(~ ts j  don’t 
coincide with actual source )(ts j  concerning with the size 
of amplitude as they are. If we assume that the damping 
coefficient is in inverse proportion to the propagation 
distance, the damping (alj) ( 1=l ) can be calculated as 

)1414.01111.00614.00909.00720.0()( =lja .     (25) 

Through the multiplication )(~ ts j  by them, we finally get 
)(~ ts j  which is coinciding with )(ts j  about the size too. 

Fig.8 shows calculated signals )(~ ts j . Compared with actual 
source signals )(ts j  (Fig.3), there are very good 
coincidence and errors of less than 0.06%. 

4 Conclusion 

The method for the separation of observation signals and 
the specification of location of source signals was 
formulated through the consideration of time lag. Using this 
method, the separation and the specification of location can 
be conducted, under the assumption of some independency 
of source signals. It is confirmed through the numerical test 
that the specification of location has done almost 
completely and the separation has done with high accuracy. 
 

 

Time [sec] 

Fig.8 Calculated source signals. 
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