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The knowledge of the array manifold vectors of an acoustic array can be imprecise, which is often the case in 
practice. This may cause undesirably high sidelobes for a nominal optimal beamformer where the array manifold 
vectors are assumed to be known exactly. Although the norm constraint on beamformer weights can be imposed 
to improve the robustness of the optimal beamformer, it is not clear how to choose the optimal constrained 
parameter based on the known level of uncertainty of the array manifold vectors. A pattern synthesis approach to 
arbitrary arrays with robustness against array manifold vectors errors is developed. Our technique optimizes the 
worst-case performance by minimizing the worst-case sidelobe level while maintaining a distortionless response 
to the worst-case signal steering vector. The parameters can be optimally chosen based on the uncertainty of the 
array manifold vector. The robust beamformer problem is shown to be convex, which can be efficiently solved 
using second-order cone programming. A simple lower bound on how much worse the robust optimal 
beamformer will be compared to the nominal one is also derived. Computer simulations show better 
performance of the proposed robust beamformer. 

1 Introduction 

Array signal processing has wide applications in sonar, 
radar, wireless communications, seismology, medical 
imaging, etc [1, 2]. Array pattern synthesis is one of the 
most important tasks. Beamformers can have unacceptably 
high sidelobes, which can lead to severe performance 
degradation in the case of unexpected or suddenly 
appearing interferers. The issue of synthesizing array 
patterns with low sidelobes has received much attention 
over the years. 
The classical Dolph-Chebychev synthesis technique was 
given by Dolph [3], which results in a sidelobe level that is 
minimum possible for a given mainlobe width.  However, 
this method can only be applied for uniform linear arrays 
with isotropic and equal element patterns. Many pattern 
synthesis approaches have been proposed for arrays of 
arbitrary geometry and with nonisotropic and unequal 
element patterns using adaptive array theory [4], recursive 
least squares algorithm [5], and so on. For both approaches 
in [4] and [5], an iteration process is required and the 
convergence of the iterations in general cannot be 
guaranteed. Array pattern synthesis approaches using 
convex optimization were presented in [6] and [7], where 
peak sidelobe level control designs were considered for 
deterministic and adaptive arrays, respectively. For both 
approaches, the convergence can be guaranteed. Recently, 
the author presented pattern synthesis methods for 
broadband arrays using convex optimization [8, 9], in 
which the broadband pattern sidelobes can be strictly 
controlled.  
In all these approaches [3-9], the array manifold vectors are 
assumed to be known exactly. In practice, however, the 
knowledge of the array manifold vectors can be imprecise. 
This manifold vector mismatch can be caused by sensor 
sensitivity mismatch, channel gain and phase mismatch, 
element position perturbations, structural scattering, 
shadowing, mutual coupling between the sensors, and so 
on. This may cause undesirably high sidelobes for a 
nominal optimal beamformer. 
The quadratically constrained beamformers (e.g., weight 
vector norm constrained beamforming method [10, 11], 
whose implementation is often based on the so-called 
diagonal loading of the covariance matrix [12]) are known 
to be able to improve the robustness of a beamformer. 
Although this constraint can be imposed to the 
aforementioned optimal array pattern synthesis approaches 
to improve their robustness, it is not clear how to choose 

the optimal constrained parameter based on the uncertainty 
of the array manifold vectors.  
Recently, several robust approaches that make explicit use 
of an uncertainty set of the signal steering vector were 
proposed to adaptive beamforming [13-17]. These 
approaches also belong to the extended class of diagonal 
loading approaches, but the diagonal loading factor can be 
calculated based on the uncertainty set of the signal steering 
vector. Among them, the approach in [13] is based on the 
worst-case performance optimization. More recently, a 
worst-case robust beamforming approach with 
multiplicative uncertainty in the weights is proposed [18]. 
The obtained beamformer is quite robust to weight 
variation.  
In this paper, a new powerful pattern synthesis approach to 
arbitrary arrays with low sidelobes and robustness against 
array manifold perturbations is developed. This approach is 
also based on the optimization of worst-case performance. 
It’s shown that the parameters of this robust beamformer 
can be calculated based on the known level of uncertainty 
of the array manifold vectors. The robust array pattern 
synthesis problem is rewritten in an equivalent convex 
optimization form, which can be solved efficiently using a 
second-order cone programming (SOCP) solver such as 
SeDuMi [19].  

2 Background 

Consider an M-element array. Assuming that the arriving 
signal is a narrowband plane wave, the array manifold 
vector can be expressed as 

 
T

Mm vvv )](),...,(),...,([)( 1 θθθθ =v  
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M
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m
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1 θφθφθφ θθθ= ,  

 Θ∈θ ,  (1) 

where T)(⋅  denotes the transpose, )()()( θφθθ mj
mm eAv =  is 

the element response of the mth sensor with )(θmA  being 
the magnitude of the element pattern and )(θφm  being the 
phase delay due to propagation. Θ  is the set of all possible 
wave parameters. In the plane case, ]360,0[ °°=Θ  
corresponds to the possible arrival angle of a plane wave. 
The array pattern is a function of array’s response to a unit 
input signal over angles of interest. It is given by 

 )()( θθ vwHp = , Θ∈θ ,  (2) 
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where T
Mwww ],...,,[ 21=w  is the complex weight vector of 

the array and H)(⋅  denotes the Hermitian transpose. 

Let SLΘ  be the given sidelobe region and SLK Θ∈θθ ,...,1  be 
the angular grids chosen that properly approximate the 
sidelobe region by a finite number of directions. The 
sidelobe level of the array pattern can be approximated 
fairly accurately by 

 |)(|max
,...,1 k

H

Kk
G θvw

=
= , SLk Θ∈θ ,  (3) 

The goal of a nominal optimal beamformer is to minimize 
the sidelobe level with the distortionless response constraint 
in the desired direction. The array pattern synthesis problem 
is formulated as follows: 

 G
w

min , subject to 1|)(| 0 =θvwH ,  (4) 

where 0θ  is the desired direction. The manifold vector 
corresponding to the desired signal, )( 0θv ,  is referred to as 
the steering vector.  
Eq.(4) can be transformed to an equivalent problem 

 G
w

min , subject to 1)( 0 =θvwH ,  (5) 

which is a convex problem [6]. The solution of Eq.(5) can 
be obtained using SOCP solver such as SeDuMi. 
SOCP is a subclass of the well-structured convex 
programming problems where a linear function is 
minimized subject to a set of second-order cone constraints 
and possibly a set of linear equality constraints. The global 
optimal numerical solution of an SOCP problem is 
guaranteed if it exists. A review of the applications of 
SOCP was presented by Lobo et al. [20]. 
Let nomw  be the solution of optimization problem (5). 
Using Eq.(3), the resulting sidelobe level of this nominal 
beamformer is given by 

 |)(|max
,...,1 k

H
nomKknomG θvw

=
= , SLk Θ∈θ .  (6) 

3 Proposed method 

In the practical case, only an imprecise knowledge of the 
actual manifold vectors is available. The actual manifold 
vector T

kMkkk vvv )](~),...,(~),(~[)(~
21 θθθθ =v  can therefore be 

expressed as 
 )()()(~

kkk θθθ Δvv += , Kk ,...,1,0= ,  (7) 

where )( kθv  is the ideal (presumed) array manifold vector, 
and )( kθΔ  is an unknown complex vector that describes the 
array manifold vector distortions. The only knowledge we 
have about )(~

kθv  is that it belongs to an uncertainty set 
that we denote by )( kU θ  and will be defined later. 

When there is uncertainty, the distortionless response 
constraint in Eq.(4) should be replaced with 

 1|)(| 0 ≥θuwH , for all )()( 00 θθ U∈u .  (8) 

The worst-case sidelobe level is 

 |)(|maxmax
)()( k

H

Uwc
kkSLk

G θ
θθθ

uw
u ∈Θ∈

= .  (9) 

Using the worst-case performance optimization, our robust 
formulation of optimal beamformer can be written as the 
following constrained minimization problem: 

 wcG
w

min , subject to 1|)(|min 0)()( 00

≥
∈

θ
θθ

uw
u

H

U
.  (10) 

We assume that the array manifold vector distortion )( kθΔ  
is norm-bounded by some known constant 0>kε ,  

 kk εθ ≤||)(|| Δ .  (11) 

Then, the actual array manifold vector )(~
kθv  belongs to the 

following uncertainty set: 

 }||)(||),()()()({)( kkkkkkkU εθθθθθθ ≤+==
Δ

eevuu , 

  Kk ,...,1,0= .  (12) 

Here, )( kU θ  is an ellipsoid that covers the possible range 
of values of )(~

kθv  due to imprecise knowledge of the array 
manifold )( kθv . 

Observe that (see [13]), for any )()( 00 θθ U∈u , we have 

 |)()(||)(| 000 θθθ ewvwuw HHH +=  

 |)(||)(| 00 θθ ewvw HH −≥  

 |||||)(| 00 wvw εθ −≥ H
.  (13) 

Note that we require that |||||)(| 00 wvw εθ ≥H . Moreover, 
the equality in Eq.(13) holds with the choice of 

 )](arg[
00

0)||||()( θεθ vwwwe
Hje−= .  (14) 

Therefore, we have  
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Similarly, with )](arg[)||||()( k
Hj

kk e θεθ vwwwe = , we have 
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Substituting Eq.(16) into Eq.(9) gives 

 ||]|||)([|max wvw kk
H

wc
SLk

G εθ
θ

+=
Θ∈

.  (17) 

Using Eq.(15) and Eq.(17) in Eq.(10) gives 

 ||]|||)([|maxmin
,...,1

wvw
w kk

H

Kk
εθ +

=
,  

 subject to 1|||||)(| 00 ≥− wvw εθH .  (18) 

Using the fact that the cost function in Eq.(18) is unchanged 
when w  undergoes an arbitrary phase rotation, it can be 
written as 

 ||]|||)([|maxmin
,...,1

wvw
w kk

H

Kk
εθ +

=
,  

 subject to ||||1)( 00 wvw εθ +≥H .  (19) 

This is also a convex problem and its solution, robw , can be 
obtained using an SOCP solver such as SeDuMi. 
We next derive a simple lower bound on how much worse 
the robust optimal beamformer will be compared to the 
nominal beamformer when εε =k , Kk ,...,1,0= .  

Let wcoG  be the optimal value of the robust beamforming 
problem (19), i.e., 
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 ||]|||)([|max
,...,1 robk

H
robKkwcoG wvw εθ +=

=
  

 
|||||)(|max

,...,1 robk
H
robKk

wvw εθ +=
= .  (20) 

Note that an equivalent problem to Eq.(15) is 

 G
w

min , subject to 1)( 0 ≥θvwH ,  (21) 

This can be proved by contradiction as follows. If the 
minimum of the objective function in Eq.(21) is achieved 

when 1)( 00 >=
Δ

θvwHp , replacing w  with 0/ pw , we can 
decrease the objective function while the inequality 
constraint will be still satisfied. Therefore, optimization 
problem (21) is equivalent to Eq.(5).  

Note that robw  is a feasible point of the nominal problem 
(21), by the optimality definition, we have 

 |)(|max|)(|max
,...,1,...,1 k

H
nomKkk

H
robKk

θθ vwvw
==

≥ ,  (22) 

From the constraint in Eq.(19), we have 

 1||)(||||||1)(|||| 00 −⋅=−≤ θθε vwvww rob
H
robrob   (23) 

and hence, we get a lower bound on |||| robw : 

 )||)(/(||1|||| 0 εθ −≥ vw rob .  (24) 

Using Eq.(6), Eq.(20), Eq.(22) and Eq.(24) gives 
 )||)(/(|| 0 εθε −≥− vnomwco GG .  (25) 

For example, if ||)(||05.0 0θε v= , which corresponds to 
5% uncertainty in the manifold vectors, then 

 0526.0≥− nomwco GG .  (26) 

In particular, we cannot achieve a worst case sidelobe level 
smaller than dB6.250526.0log20 10 −= , regardless of the 
array geometry or the number of elements. However, the 
resulting sidelobe level, |)(~|max k

H

SLk

θ
θ

vw
Θ∈

, can be smaller 

than that value. Interestingly, this 2l -regularization of 
robust pattern synthesis problem has the same lower bound 
on worst case sidelobe level as the 1l -regularization of 
beamforming problem [18] with no manifold vectors 
uncertainty and 5% weight uncertainty. 

4 Numerical results 

Consider a 24-element uniform circular array with radius 
λ96.0=r , where λ  is the wavelength. The location of the 

mth sensor is  

 0.5)])(
24
2sin[0.5)],(

24
2cos[(),( −−= mrmryx mm

ππ . 

Assume that the mth element response is given by  

 λθθπθ /)]cos()cos([2)( mm yxj
m ev += .  (27) 

Clearly, M=||)(|| θv . 

We provide numerical examples in this section to compare 
the performances of the delay-and-sum beamformer, the 
nominal optimal beamformer (5), and the robust optimal 
beamformer (19). We use Mk 05.0=ε in Eq.(19) and let 

°= 1800θ  and ]360,205[]155,0[ °°∪°°=ΘSL  which is 
sampled with °1 .  
Fig. 1 shows the ideal beam pattern obtained by the three 
beamformers when there is actually no array manifold 
error, i.e., )()(~

kk θθ vv = . It is seen that the obtained 
sidelobe level of delay-and-sum beamformer is about 9.7−  
dB, which can be prohibitively high in many applications. 
The nominal optimal beamformer provides excellent 
sidelobes when there are no array manifold errors. The 
resulting sidelobe level of the robust beamformers is about 

3.24−  dB, lower than delay-and-sum beamformer and 
higher than nominal optimal beamformer. By calculating, 
the worst case sidelobe level of the robust beamformer is 

8.16−=wcoG  dB.  
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Fig. 1 Beampattern when there is no manifold error. 

We next consider a scenario with the array manifold 
uncertainty. Assume that  each element of the manifold 
vector for each direction is perturbed with a zero-mean 
circularly symmetric complex Gaussian random variable 
normalized so that 05.0|)()(~| =− kmkm vv θθ . The perturbing 
Gaussian random variables are independent of each other. 
We use 100 Monte Carlo simulations to compare the 
statistical performances of the resulting sidelobe level of 
these three beamformers, as shown in Fig. 2.  
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Fig. 2 Sidelobe level when 05.0|)()(~| =− kmkm vv θθ . 
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Note from Fig. 2 that the sidelobe level variance of delay-
and-sum beamformer is much smaller than that of nominal 
optimal beamfomer, which means the former is much more 
robust in the presence of array manifold mismatch than the 
latter. The sidelobe level variance of the robust method is 
smaller than that of nominal optimal beamfomer and bigger 
than that of delay-and-sum beamformer. Hence, Fig. 1 and 
Fig. 2 show that our method provide another trade-off 
between the sidelobe level and the robustness. 
Note from Fig. 1 and Fig. 2 that with uncertainty present, 
the sidelobe level of the nominal optimal beamformer 
increases rapidly, although its sidelobes are very low in the 
ideal case with no array manifold error. On the other hand, 
the sidelobe levels by our robust algorithm just degrade a 
little compared to the ideal case. Obviously, it provides 
sufficient robustness against array manifold errors as 
compared to the nominal optimal beamformer. 

5 Conclusion 

A robust array pattern synthesis approach based on the 
worst case performance optimization has been developed. 
The problem is reformulated as a convex optimization 
problem which can be solved efficiently using an SOCP 
solver. This beamformer can provide good robustness in the 
presence of array manifold perturbations. The advantage of 
the proposed technique is that the parameters can be 
optimally chosen based on the uncertainty level of the array 
manifold vector. The simple lower bound on how much 
worse the robust beamformer will be compared to the 
nominal one has also been derived. Results of numerical 
examples show good performance of the proposed approach 
in the case of uncertain array manifolds. 

Acknowledgments 

The author would like to thank Professor Jens M. Hovem 
and Professor Hefeng Dong at Norwegian University of 
Science and Technology for their discussions. This work 
was supported by the National Natural Science Foundation 
of China under Grant No. 60602055. 

References  

[1] H. L. Van Trees, Optimum Array Processing: Part IV 
of Detection, Estimation, and Modulation Theory. New 
York: John Wiley & Sons, Inc, 2002. 

[2] J. Li, P. Stoica, Robust Adaptive Beamforming. New 
York: John Wiley & Sons, Inc, 2005. 

[3] C. L. Dolph, "A current distribution for broadside 
arrays which optimizes the relationship between beam 
width and side-lobe level", Proc. IRE 34, 335-348 
(1946) 

[4] C. A. Olen, R. T. Compton, "A numerical pattern 
synthesis algorithm for arrays", IEEE Trans. Antennas 
Propagat. 38, 1666-1676 (1990) 

[5] D. Dotlic, A. J. Zejak, "Arbitrary antenna array pattern 
synthesis using minimax algorithm", Electronics 
Letters 37, 206-208 (2001) 

[6] H. Lebret, S. Boyd, "Antenna array pattern synthesis 
via convex optimization", IEEE Trans. Signal 
Processing 45, 526-532 (1997) 

[7] J. Liu, A. B. Gershman, Z. Q. Luo, K. M. Wong, 
"Adaptive beamforming with sidelobe control: A 
second-order cone programming approach", IEEE 
Signal Processing Lett. 10, 331-334 (2003) 

[8] S. F. Yan, C. H. Hou, X. C. Ma, Y. L. Ma, "Convex 
optimization based time-domain broadband 
beamforming with sidelobe control", J. Acoust. Soc. 
Am. 121, 46-49 (2007) 

[9] S. F. Yan, Y. L. Ma, C. H. Hou, "Optimal array pattern 
synthesis for broadband arrays", J. Acoust. Soc. Am. 
122, 2686-2696 (2007) 

[10] H. Cox, R. M. Zeskind, M. M. Owen, "Robust adaptive 
beamforming," IEEE Trans. Acoust. , Speech, Signal 
Processing 35, 1365-1376 (1987) 

[11] S. F. Yan, Y. L. Ma, "Robust supergain beamforming 
for circular array via second-order cone programming", 
Applied Acoustics 66, 1018-1032 (2005) 

[12] B. D. Carlson, "Covariance-matrix estimation errors 
and diagonal loading in adaptive arrays", IEEE Trans. 
Aerosp. Electron. Syst. 24, 397-401 (1988) 

[13] S. A. Vorobyov, A. B. Gershman, Z. Q. Luo, "Robust 
adaptive beamforming using worst-case performance 
optimization: A solution to the signal mismatch 
problem", IEEE Trans. Signal Processing 51, 313-324 
(2003) 

[14] P. Stoica, Z. S. Wang, J. Li, "Robust capon 
beamforming", IEEE Signal Processing Lett. 10, 172-
175 (2003) 

[15] J. Li, P. Stoica, Z. S. Wang, "On robust Capon 
beamforming and diagonal loading", IEEE Trans. 
Signal Processing 51, 1702-1715 (2003) 

[16] J. Li, P. Stoica, Z. S. Wang, "Doubly constrained 
robust Capon beamformer", IEEE Trans. Signal 
Processing 52, 2407-2423 (2004) 

[17] R. G. Lorenz, S. R. Boyd, "Robust minimum variance 
beamforming", IEEE Trans. Signal Processing 53, 
1684-1696 (2005) 

[18] Mutapcic, S. J. Kim, S. Boyd, "Beamforming with 
uncertain weights", IEEE Signal Processing Lett. 14, 
348-351 (2007) 

[19] J. F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox 
for optimization over symmetric cones", Optim. 
Methods Software 11-12, 625-653 (1999) 

[20] M. S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, 
"Applications of second-order cone programming", 
Linear Algebr. Appl. 284, 193-228 (1998) 

Acoustics 08 Paris

3005


