In vitro evaluation of an oscillating 5-element dual-mode transducer

Neil Owena, Guillaume Bouchouxa, Alain Birera, Rémi Berrietb, Jean Yves Chapelona, Gérard Fleuryc and Cyril Lafona

aINSERM, U556, 151 Cours Albert Thomas, 69003 Lyon, France
bImasonic, Z.A. rue des Savourots, 70190 Voray sur l'Ognon, France
cImasonic, 15 rue Alain Savary, 25000 Besançon, France

Miniature dual-mode transducers can be used for minimally invasive treatment of deep-seated tumors. While in contact with the tissue, the transducer guides and monitors localized necrosis. Here, an oscillating 5-element piezo-composite transducer was characterized, and then evaluated in vitro using porcine liver. Each element was 3.0 x 3.8 mm2 with a geometric cylindrical focus of 14 mm. The transmit frequency was determined by the maximal electro-acoustic efficiency, 65\%, which was found at 5.6 MHz. The transmit-receive impulse response was 400 ns long at -6 dB, and the -6 dB fractional bandwidth, centered at 5.6 MHz, was 30\%. Axial and lateral resolution measured with a 0.1 mm diameter wire was 0.5 mm and 2.0 mm, respectively. For therapy, all elements radiated simultaneously, and for imaging, independently. Treatment was performed at increments of 20\(^\circ\) to form a composite volume of necrosis. At each angle, ultrasound was applied for 60 s at a transducer surface intensity of 15 W/cm2. Pulse-echo data were recorded while the transducer oscillated over a 180\(^\circ\) sector to form images before and after treatment at each angle. Gross examination of lesion size agreed well with echogenic region size in the images. [Supported by ANR and Inserm Post-doctoral Fellowship]