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The band-pass structure of the defect-mode waveguides (DMWGs) fabricated in sonic/phononic crystals
has desirable characteristics for practical applications to the acoustic band-pass filter. The waveguide
mechanism is considered to originate in the mode-coupling of point-defects, a chain of which composes
a DMWG, in the crystal. In order to analyze the mechanism which determines the bandwidth of the
DMWG, we developed a phenomenological linear coupled-mode equation for an arbitrary number of
linearly coupled resonant modes, derived recursive eigenvalue equations, and analytically solved eigen-
frequencies up to the seventh order. The eigenfrequencies were quantitatively compared with the peak-
frequencies in the transmission spectra obtained by an elastic FDTD simulation of the acoustic wave
propagations in the DMWGs. They showed a quite good quantitative agreement. The bandwidth of the
DMWGs in a sonic/phononic crystal with an identical coupling coefficient was estimated to be around
1.85 times the resonant-frequency split of the coupled two point-defects. Adjustment of the coupling
coefficient is considered to be the easiest way to control the bandwidth of the DMWG filter.

1 Introduction

Sonic/phononic crystals are artificial crystals for sonic
or ultrasonic waves, just like photonic crystals for light
waves.1 Their periodic array of scatterers makes a full
(omnidirectional, or complete) band gap, in which no
plane waves can propagate through the crystal in any
direction and the waves are completely reflected.2 One
of most attractive features of these artificial crystals is
an ability to fabricate various types of acoustic wave-
guides. Conventionally, a line of successive scatterers are
removed to fabricate a waveguide which is surrounded
by two blocks of artificial crystals with a full band gap.3

In contrast to the above mentioned conventional
linear-defect waveguides, novel ones named defect-mode
waveguides (DMWGs) have been studied for acoustic
waves.4–6 A DMWG is composed of a chain of point-
defects,9 where a point-defect or a single-defect is a lack
of a scatterer in a sonic/phononic crystal, typically be-
ing fabricated by removing every second scatterers of
the host crystal along the desired propagation path of
the relevant waves. Straight and sharp perpendicularly
bending DMWGs have been discussed in comparison to
the conventional waveguides.9 The most distinct feature
is a clearly distinguished passband of a nearly 0 dB flat
transmission for any DMWGs with and without sharp
bends, while the conventional waveguides have a rela-
tively low transmission of −9 dB.

Visualized observation of the numerical simulations
of the wave propagation along DMWG revealed a suc-
cessive transfer of a kind of localized resonant mode
between the point-defects and two good characteristics
(1) the guided waves travel along the waveguide without
noticeable reflection at input and output, and even at
sharp bends of the waveguides, and (2) the waves are
well confined around the waveguide with a good trans-
mission of about 0 dB.9 It was found quite easy to fab-
ricate acoustic waveguides of a bandpass characteristic
with sharp perpendicular bends, branch or crossroads,8

and also two coupled waveguides in a sonic/phononic
crystal.9

A resonant mode localized in a point-defect, named
defect-mode, has no capabilities to travel in the crys-
tal. Acoustic coupling between the defect-modes of the
neighboring point-defects through their evanescent fields
opens, however, a way for the defect-modes to travel.
The most simple case of two coupled defect-modes has
been successfully discussed by phenomenologically ap-
plying a liner coupled-mode theory, and a coupling co-

efficient has been estimated precisely both theoretically
and experimentally.7 In this report, the linear coupled-
mode theory is developed to an arbitrary number of cou-
pled resonant modes, namely recursive formulae for the
eigenfrequencies are derived. Furthermore, analytical
solutions are calculated up to the seven coupled-modes,
and quite good agreements are obtained with the trans-
mission spectra of the DMWGs calculated by FDTD
simulations and with those observed experimentally.

2 Experimental transmission

spectra of DMWGs

First we show a most fundamental example of DMWGs,
namely, a short straight 2-D DMWG consisting of a
chain of seven point-defects, in Fig. 1(a), among already
reported8 short or long DMWGs with a bend, branch or
crossroads. They were fabricated in a sonic crystal con-
sisting of an array of 15 × 11 acrylic-resin cylinders in

(a) 2-D defect-mode waveguide
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(b) Transmission spectra

Figure 1: Experimental transmission of defect-mode
waveguides compared with theoretical one obtained by
a finite-difference time-domain numerical simulation.
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air with a lattice constant a of 6.25mm and a diameter
of the scatterers of 5.0mm. The measured frequency
characteristics of the normalized transmission, shown in
Fig. 1(b), have a clearly distinguishable and relatively
flat passband between 0.545 to 0.594 in the normalized
frequency (a/λ) with a nearly 0 dB transmission. They
agree closely with the theoretical results9 as shown in
the same figure. The purpose of this paper is to show
quantitatively that those good characteristics of DMWG
result from a linear mode coupling between a chain of
point-defects.

3 Theoretical analysis

Mode coupling phenomena between adjacent two point-
defects and split resonant frequencies making ripples in
the frequency characteristics of the wave transmission
through a chain of point-defects are considered funda-
mental features of the DMWG mechanism. The finite-
difference time-domain (FDTD) method is the most
powerful one to simulate precisely waves in an arbitrary
structure of materials. We have simulated the behav-
iors of acoustic waves in DMWGs by the elastic FDTD
method.8 The lattice constant is a = 50Δx and the
radius of the acrylic resin cylinders is r = 20Δx, conse-
quently the filling ratio is 0.503, where Δx is the spatial
sampling interval for the FDTD calculation.

3.1 Internal excitation

We have investigated the magnitude of the mode cou-
pling not only between adjacent two point-defects but
also between two point-defects separated along a lattice
axis by three or four times the lattice constant.10 The
temporal evolution of the sound pressure at the center of
the two point-defects are shown in Fig. 2. Excitation of
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Figure 2: Internal excitation of the coupled two
point-defects simulated by FDTD method.

sound pressure at the center of the left point-defect with
a five-period tone-burst makes, after a short transient,
a steady oscillation in the left point-defect, as shown by
a blue curve. A defect-mode is excited also in the right
point-defect, as shown by a red curve, through an energy
transfer by the mode coupling. An alternative excitation
of the acoustic fields in the two point-defects occurs pe-
riodically. The period of the energy transfer has a direct
relation to the magnitude of the mode-coupling between
the point-defects, as discussed in the later sections.

3.2 External excitation

Standard DMWGs are considered with a scatterer at
both input and output. Even a chain of several point-
defects works as a good practical waveguide bandpass
filter as shown in Fig. 1. So, from a point-defect to a
chain of seven point-defects, we have calculated their
transmission spectra by the FDTD method.7 Their
cross-sections are shown in Fig. 3(a). All point-defects

(a) Standard chains of point-defects

(b) Chains ended with an additional scatterer
at both input and output

Figure 3: Two types of chains of point-defects.

are neighbored with a scatterer between them, and also
the output and input ones have a scatterer between
the outside of the crystal. The calculated transmission
spectrum of the shortest one with a point-defect has a
broad and smooth resonance as shown by a black curve
in Fig. 4(a). Increasing the number of point-defects in
a chain as shown in Fig. 3(a), the transmission has as
many peak frequencies as the number of point-defects,
and makes small ripples in the high transmission range,
namely in the passband. The transmission through a
chain of seven point-defects is shown by a red curve.
It has approximately 2 dB ripples in the center of the
passband. Note that the bottoms of the left and right
outer-most ripples level just on the broad transmission
for a point-defect. Outside the passband are the forbid-
den bands, whose levels are deeper with the number of
point-defects unsymmetrically from −4 dB to −47ḋB.

One of the important requirements to this desirable
characteristics for an acoustic bandpass filter is to design
easily the bandwidth. In order to make clear the peak
frequencies in the passband and to investigate them
quantitatively, we embedded the chains of point-defects
deeper in the crystal with an additional scatterer at both
input and output, as shown in Fig. 3(b). Resonant fre-
quencies are clearly calculated as shown in Fig. 4(b).
The transmission of a point-defect has a sharp narrow
resonance as shown by a black curve. The transmission
has, in general, as many sharp peaks as the number
of point-defects, and makes large ripples in the pass-
band with a wide swing of approximately 18 dB. These
peak frequencies are numerically evaluated and com-
pared with the analytical results from a liner coupled-
mode theory in the following sections to know factors
which determine the bandwidth of the passband.
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Figure 4: Transmissions along chains of point-defects.

4 Analysis based on coupled-

mode theory

The resonant mode in a point-defect, the defect mode,
deep in a sonic/phononic crystal is well confined therein
and has a high Q value.10 It is considered reason-
able that the defect-modes couple only with their next
neighboring ones. We have applied successfully a lin-
ear coupled mode equation for two identical resonant
modes to a quantitative analysis of the mode coupling
between two point-defects, whose coupling coefficients
are conditioned so that the whole system fulfills the en-
ergy conservation law.10 We have extended the coupled-
mode theory to the coupling among an arbitrary num-
ber of resonant modes, derived a recursive formula of

the eigenvalue-equations, and found that they are easily
solved analytically till the seventh order.

4.1 Linear coupled-mode theory

The coupled-mode equations for two adjacent point-
defects embedded deep in a crystal was discussed and
proved to have a good numerical coincidence among the
results obtained by the FDTD simulation and the exper-
imental results for a sonic crystal of acrylic-resin cylin-
ders in air.7, 10

d

dt
ϕ1(t) = j2πf0 ϕ1(t) + Ca ϕ2(t), (1)

d

dt
ϕ2(t) = j2πf0 ϕ2(t)− C∗a ϕ1(t), (2)

where ϕ1(t) and ϕ2(t) denote scalar potentials of two
adjacent defect-modes with an identical resonance fre-
quency f0 and a complex coupling coefficient Ca. Note
that the coupling coefficient −C∗

a
in the second equation

is so determined as to fulfill the energy conservation law,
which is easily confirmed by calculating the temporal
variation of |ϕ1(t)|2 + |ϕ2(t)|2 as

d

dt
{|ϕ1(t)|2 + |ϕ2(t)|2} = 0. (3)

The eigenfrequencies of Eqs (1) and (2) are given by

f = f0 ± |Ca|
2π

. (4)

Experimental frequency split was measured as
1.52 kHz for the externally excited two adjacent point-
defects in a sonic crystal, as shown in Fig. 3, and the
magnitude of their coupling coefficient is evaluated as
4.775 × 103 s−1 according to Eq (4). The temporal so-
lutions of Eqs (1) and (2) show sinusoidally amplitude-
modulated sound waves of a frequency f0 with a com-
plete alternative energy transfer between two defects,
whose period is inversely proportional to the magni-
tude of the coupling coefficient |Ca|. This phenomenon
was simulated for internally excited two adjacent point-
defects in the sonic crystal of acrylic resin cylinders in air
by means of the FDTD method. The coupling coefficient
|Ca| determined from this simulation is 4.85 × 103 s−1.
The fact that these evaluated values of |Ca| are in good
agreement indicates a validity of application of the linear
coupled-mode theory to a chain of point-defects which
fabricates an acoustic DMWG.

The above good results have encouraged us to ex-
tend further the linear coupled-mode theory to a general
number of identical point-defects.

d

dt
ϕ1(t) = j2πf0 ϕ1(t) + Ca ϕ2(t), (5)

d

dt
ϕ2(t) = j2πf0 ϕ2(t)− C∗a ϕ1(t)− C∗b ϕ3(t), (6)

d

dt
ϕ3(t) = j2πf0 ϕ3(t) + Cb ϕ2(t). (7)

In this system, three defect-modes have an identical nat-
ural resonance frequency f0, but they may have different
coupling coefficients |Ca| and |Cb|. It is easy to confirm
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the energy conservation. Three eigenfrequencies are also
easily obtained as

f = f0, f0 ±
√∣∣∣∣Cb

Ca

∣∣∣∣
2

+ 1
|Ca|
2π

. (8)

Coupled-mode equations for an arbitrary number of
defects were similarly constructed, and their eigenvalue
equations were obtained recursively. The eigenvalue
equation of a degree 2n requires us to find, in general, n
roots of a polynomial of a degree n with real coefficients.
The eigenvalue equation of a degree (2n+1) has always
a solution of f = f0. So, it requires us to find similarly
n roots of a polynomial of a degree n with real coeffi-
cients. A general recursive expression of the eigenvalue
equation of a degree N is

�0(f − f0) = 1, (9)

�1(f − f0) = 2π(f − f0), (10)

�na...αn−1
(f − f0) = �1(f − f0)�(n−1)a...αn−2

(f − f0)

− |Cαn−1
|2�(n−2)a...αn−3

(f − f0)

for n ≥ 2, (11)

where αn denote the n-th letter of the English alphabet.
Then, it is easy to find eigenfrequencies for an arbitrary
number of defects at least numerically, for example, by
the Newton-Raphson method.

In case of identical coupling coefficients, the eigen-
frequency equations for one to seven coupled modes are
simple, and they are given by

√
X = 0, (12)

X − 1 = 0, (13)√
X(X − 2) = 0, (14)

X2 − 3X + 1 = 0, (15)√
X(X2 − 4X + 3) = 0, (16)

X3 − 5X2 + 6X − 1 = 0, (17)√
X(X3 − 6X2 + 10X − 4) = 0, (18)

where X =

{
2π

|C| (f − f0)

}2

. These equations are all

solved analytically by means of the root formulae for
the algebraic quadratic and cubic equations.

4.2 Comparison between theoretical

results and numerical transmission

spectra

The eigenfrequencies are calculated from the coupled-
mode theory using the coupling coefficient |C| = 4.85×
103 [s−1] which was determined from the rate of the al-
ternative energy transfer between the coupled two point-
defects by a FDTD simulation of the internal excitation
in Sec. 3.1. They are plotted in Fig. 5 together with the
frequency-peaks of the transmission spectra which are
obtained in Sec. 3.2. The central frequencies of chains
of point-defects in the crystal are moved slightly to the
higher frequency side due to the unsymmetrical struc-
ture of the full band-gap in which the defect-modes ex-
ist. The frequency differences between the highest and
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Figure 5: Numerical comparison between the coupled-
mode theory and the transmission spectra of the

DMWG by the FDTD method.

the lowest, which is the bandwidth of the DMWG filter,
well coincide numerically with each other in Fig. 5. They
saturate enough with a chain of seven point-defects. We
can predict from these results the pass-band width of

long DMWGs to be approximately 2× 1.85 × |C|
2π

[Hz],

namely 1.85 times the split of the resonant frequencies
of the coupled two point-defects. These results have
been discussed for an identical coupling coefficient be-
tween all point-defects in the DMWG. There will be no
practical broadening of the passband with non-uniform
coupling coefficients, being considered from the detailed
coefficients of the eigenfrequency equations.

5 Conclusion

Good transmission characteristics of the defect-mode
waveguide as an acoustic bandpass waveguide filter was
considered due to linear mode-coupling of a chain of
point-defects which are embedded in a sonic/phononic
crystal and compose a defect-mode waveguide. We have
developed a linear coupled-mode theory for two coupled
modes to a general one for an arbitrary number of lin-
early coupled resonant modes, whose couplings are re-
stricted between adjacent modes. General formulae of
eigenvalue equations have been derived to determine the
eigenfrequencies.

The transmission spectra of defect-mode waveguides
previously obtained by numerical simulations are quan-
titatively compared with the eigenfrequencies calculated
from the eigenvalue equations. Their frequencies agree
quite well with each other, except a slight deformation
of the central frequencies of the DMWG to the higher
frequency side due to the unsymmetrical structure of
the full band gap. The analytically solved eigenfrequen-
cies were shown up to the seventh order, although they
can be quite easily solved numerically up to an arbitrary

Acoustics 08 Paris

83



order. However the higher-order solutions are unneces-
sary, because the frequency width of the eigenfrequen-
cies proved to saturate around at the seventh order.

Therefore the bandwidth of the DMWG in a sonic/
phononic crystal with an identical coupling coefficient
is estimated to be around 1.85 times the resonant fre-
quency split of the coupled two point-defects. Adjust-
ment of the coupling coefficient will be the easiest way
to control the bandwidth of the DMWG bandpass filter.
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A Coupled-mode equations for

different resonant frequencies

with energy loss

(a) A point-defect deep in a sonic/phononic crystal.

d

dt
ϕ1(t) = j2πf1 ϕ1(t)− γiϕ1(t). (19)

The nonzero γi is due to acoustic power dissipation in
the scatterers which fabricate the crystal and by acoustic
radiation to the outer free space. The internal Q is given
by Qi = 1/γi

(b) A point-defect shallow in a sonic/phononic crystal.

d

dt
ϕ1(t) = j2πf1 ϕ1(t)− γiϕ1(t)− γIOϕ1(t). (20)

Here γIO describes the input or output coupling. The
external Q is given by Qe = 1/γIO.

d

dt
ϕ1(t) = (j2πf1 − γi − γIO)ϕ1(t) + Ca ϕ2(t), (21)

d

dt
ϕ2(t) = (j2πf2 − γi)ϕ2(t)− C∗a ϕ1(t)− C∗b ϕ3(t),

(22)

d

dt
ϕ3(t) = (j2πf3 − γi − γIO)ϕ3(t) + Cb ϕ2(t). (23)
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