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Modern numerical simulation tools allow the analysis of the generation and propagation of sound. However, a 
variety of computational features are missing in these codes. These features are: Frequency dependent damping 
of the propagation medium, nonmatching grids for computing sound in neighbouring domains with quite 
different propagation velocities and perfectly matched layers for handling of open domain problems. A finite 
element environment including pre- and post-processing has been established, and transferred to industry to 
support the development of electroacoustic devices. The following real life examples will be reported: 
electrodynamic loudspeakers, noise emission from power transformers, ultrasound devices for medical therapy 
like lithotripters and a sound protection shield.  

1 Introduction

Modern numerical simulation tools allow a precise analysis 
of acoustic wave phenomena. However, up to now, a 
variety of computational features enhancing their 
applicability are missing in these codes. Therefore, it is 
sometimes cumbersome to come to practically useful 
results when applying such numerical codes to real life 
problems. In this paper, some of these lacking features will 
be addressed in a brief manner. Furthermore, finite element 
simulations of practical engineering problems will be 
demonstrated using the recently developed code NACS [1]. 

When computing the propagation of sound over long 
distances the numerical errors due to spatial and time 
discretization errors will accumulate. Many sound 
propagation media exhibit frequency dependent damping.
When using finite elements in open domain problems one 
has to overcome the difficulty of reflections at the 
boundaries of the computational domain. When computing 
sound in neighbouring domains with quite different 
propagation velocities it is useful to use different finite 
element grids for these domains, so called non-matching 
grids.

2 Computational Aspects 

2.1 Discretization of Wave Phenomena 
(Dispersion Error) 

The application of the classical Galerkin-FEM leads to an 
increasing numerical error with increasing acoustic wave 

number cfck /2/  (f and c denotes the frequency 

and speed of sound). The main effect is due to numerical 
dispersion, which shows a numerical wave number kh being 
different from the continuous wave number k. Therewith, 
the acoustic waves propagate with a wrong sound speed and 
show a phase shift compared to the analytical solution. The 
numerical error eh due to discretization can be derived as a 
function of the wave number k and the discretization 
parameter h [2] 

2

21 kCCeh  with kh    (1) 

C1, C2 denote constants which are independent of . The 
first term describes the discretization error, which can be 
effectively controlled by using accordingly smaller mesh 
sizes h by increasing wave number k. However, the second 
term in (1) denotes the pollution-error, which increases 
with k3 and which leads to severe problems for large wave 

numbers. In [3] a general formula for this error including 
the order of the finite element shape functions (p-FEM) can 
be found, that this part of the error can just be effectively 
controlled by increasing order of the finite element shape 
functions. 

2.2 Frequency Dependent Damping 

The damping of acoustic waves along their propagation 
paths is an important issue which has to be addressed 
within precise computer simulations of acoustic 
phenomena. Damping in the megahertz range for biological 
matter, for example, suggest the description with a 
frequency dependency according to a power law. With the 

two material parameters 0 and y we can make the 

following ansatz for the damping coefficient 

y||0 ,    20 y .   (2) 

The power factor is a material characteristics and an 
accurate determination is one of the goals of according 
measurements [4]. We incorporated attenuation with a 
power law frequency dependency and dispersion calculated 
from Kramers-Kronig relations. Both can be combined to a 
single term in the time domain wave equation [5], which 
was implemented for transient simulations using a 
fractional derivative.  

2.3 Open Domain Problems (Perfectly 
Matched Layers) 

One of the great challenges for volume discretization 
schemes is the precise modeling of free radiation problems. 
The crucial point for these computations is, that the 
numerical scheme avoids any reflections at the 
computational boundaries. To achieve this requirement, we 
have developed an enhanced PML (Perfectly Matched 
Layer) method, which allows computational domains being 
a fraction of the acoustic wavelength. 

Figure 1: Setup of computational domain 
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We have evaluated the PML-method, by performing a 
computation of a 2D example, as displayed in Fig. 1. This 
example, where we apply an acoustic load at the center, has 
an analytic solution according to the Hankel function. The 
total L2-error as well as the relative error at the corner of 
the propagation region has been below 0.25 % in any case. 

2.4 Matching of Different Grids (Non-
Matching Grids) 

In this section, we face a common problem within 
computational acoustics, namely that the computational 
grid in one subdomain can be considerably coarser than in 
another subdomain. In order to keep as much flexibility as 
possible, we use independently generated grids which are 
well suited for approximating the solution of decoupled 
local subproblems in each subdomain. Therefore, we have 
to deal with the situation of nonconforming grids appearing 
at the common interface of two subdomains. Special care 
has to be taken in order to define and implement the 
appropriate discrete coupling operators which are published 
with more detail in [6]. Here, we will briefly deal with the 
interface condition of the acoustic-acoustic interface. 
Therefore, in the strong setting, it is natural to impose 
continuity in the trace and flux of the acoustic pressure, 
along the common interface. In our new framework, the 
flux coupling condition will be enforced in a strong sense 
by introducing a Lagrange multiplier whereas the continuity 
in the trace will be understood in a weak sense. 

3 Practical Examples 

3.1 Electrical Power Transformer 

Within the last years the emission of sound has become a 
very important topic for power transformer manufacturers. 
Since the customers prescribe a maximum limit of the 
sound pressure level (SPL) it is very important to gain 
knowledge about the probable maximum SPL. Therefore, 
the finite element method is used to compute the sound 
emission of power transformers. Starting from the winding 
vibrations of the coils, since these are the reason for the 
vibrating tank surface, the sound emission will be 
calculated beginning at the interface between the tank 
surface and the surrounding air. To obtain free field 
conditions the above mentioned PML method is used to 
reduce the computational effort. 

Figure 2: Mesh of the Tank 

Figure 3: Setup of computational domain 

Figure 2 illustrates the meshed model of a transformer-tank. 
The setup of the computational domain is shown in Fig. 3. 
The distance between the tank surface and the boundary 
between the air and the PML region is chosen as in a 
previously performed measurement. 

In the following the SPL computed within the simulation 
and the measured values will be compared. 

Figure 4: SPL Measured Result 

Figure 5: SPL Simulated Result 

Figure 4 shows the measured result of the SPL at the main 
emitting frequency of 100 Hz measured at the left interface 
between the regions denoted by AIR and PML (see Figure 
4). An adequate view of the simulated SPL is shown in Fig. 
5. The comparison between both figures shows that the 
simulation has mainly acquired the distribution of the SPL 
at the given result surface.  

3.2 Electrodynamic Loudspeaker 

The electrodynamic loudspeaker to be investigated is 
shown in Fig. 6. A cylindrical, small, light voice coil is 
suspended freely in a strong radial magnetic field, 
generated by a permanent magnet. The magnet assembly, 
consisting of pole plate and magnet pot, helps to 
concentrate most of the magnetic flux within the magnet 
structure and, therefore, into the narrow radial air gap. 
When the coil is loaded by an electric voltage, the 
interaction between the magnetic field of the permanent 
magnet and the current in the voice coil results in an axial 
Lorentz force. The voice coil is wound onto a former, 
which is attached to the rigid, light cone diaphragm in order 
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to couple the forces more effectively to the air and, hence, 
to permit acoustic power to be radiated from the assembly. 

Figure 6: Schematic of an electrodynamic cone loudspeaker 

The finite element discretization of the electrodynamic 
loudspeaker is shown in Fig. 7. Here, the voice coil is 
discretized by so-called magnetomechanical coil elements 
based on the motional emf-term method, which solves the 
equations governing the electromagnetic and mechanical 
field quantities and takes account of the full coupling 
between these fields.  Due to the concentration of the 
magnetic flux within the magnet assembly, the magnet 
structure and only a small ambient region have to be 
discretized by magnetic finite elements. Furthermore, the 
surround, the spider, the diaphragm and, the former are 
modeled by mechanical finite elements. Finally, the 
surrounding fluid region in front of the loudspeaker is 
discretized by acoustic finite elements. The input level of 

these simulations is 1 W referred to 4 .

Infinite elements

A = 0

Loudspeaker

Magnetic finite
elements

Magnetomechanical
coil elements based
on motional emf-
term method

Linear mechanical
finite elements
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mechanical field
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Rotational axis

Magnetic-acoustic
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Acoustic
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Figure 7: Finite element model of an electrodynamic 
loudspeaker 

The numerical computations concentrate on the two most 
important design data: the frequency dependencies of the 
electrical input impedance and the axial sound pressure 
level. As can be seen in Fig. 8, good agreement between 
simulation results and measured data was achieved. 
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Figure 8: Comparison of simulated and measured results: 
(a) Frequency dependency of electrical input impedance Z,

(b) Axial sound response level SPL at 1 m distance 

Figure 9: Acoustic pressure amplitude for a frequency of 5 
kHz as computed by a nonmatching grid method 

In Fig. 9 the results for a harmonic simulation using 
nonmatching grids is shown. The detail demonstrates the 
interfaces between the nonmatching parts in the vicinity of 
the loudspeaker’s surround. For the finite element modeling 
of electrodynamic loudspeakers the utilization of 
nonmatching grids greatly increases flexibility of pre-
processing, especially the meshing process. This allows the 
use of quite different local discretizations in each 
subdomain (finer grid for membrane and coarse grid for 
acoustic field in air). Here, not only the geometry of 
adjacent elements may be independent but also their order 
of polynomial approximation is allowed to be different. 
Therewith, we could use a coarse grid with higher 
polynomial order for the acoustic field since the solution for 
the sound field in air is known to be smooth. In contrary, 
the membrane is modeled by a fine grid consisting of 
elements with lower order approximation. 

Computer-optimization 

In the course of this computer-optimization, the knowledge 
of the sensitivity studies explained in the previous section 
was put into a new prototype to reduce the even and odd 
order harmonics under large-signal conditions. As can be 
seen in Fig.10, significant smaller distortion factors were 
achieved. In particular, cubic distortion factors could be 
reduced tremendously. For example, at a frequency of 20 
Hz the improvement is 70 % in respect to the original 
loudspeaker. This significant reduction of cubic harmonics 
is in accordance with studies concerning the subjective 
perception of low-frequency distortions [7]. According to 
[7], odd order harmonics are above all responsible for the 
deterioration of the sound quality. Furthermore, the 
important ancillary condition of a similar small-signal 
behavior in respect to the original loudspeaker must be 
fulfilled. Small-signal simulations resulted in an acceptable 
reduction in efficiency of -0.5 dB. 

Furthermore, the numerically predicted improvements in 
the large-signal behavior of the loudspeaker could be 
successfully confirmed by measurements on the new 
prototype (see Fig. 10). Therefore, it can be stated that the 
developed simulation scheme is well suited to the industrial 
computer-aided design of electrodynamic loudspeakers, 
since an optimization with a significant reduced number of 
prototypes can be achieved. 
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Figure 10: Comparison of simulated and measured 
distortion factors of the optimized loudspeaker (at an input 
power of 16 W): a) Total Harmonic Distortion (THD, b) 

Quadratic distortion factor k2, c) Cubic distortion factor k3

3.3 High-Power Pulse Sources for 
Lithotripsy 

The acoustic power source for lithotripsy is based on an 
electromagnetic principle, and its schematic setup is 
displayed in Fig. 11. 

Figure 11: Schematic of an electromagnetic driven acoustic 
power source 

When the slab coil is loaded by a capacitor discharge, eddy 
currents are induced in the metallic membrane. The 
interaction between these eddy currents and the overall 
magnetic field results in a magnetic volume force (Lorentz 
force) acting on the membrane. Therewith, the membrane-
rubber structure is deformed and an acoustic pulse is 
radiated into the fluid and focused by the lens. For the 

numerical simulation a finite element grid width of 90 m
(corresponds to about 70 finite elements per fundamental 
wavelength) was used for the acoustic domain. Since in this 
case, we have to consider the non-linearities within the 
electromagnetic transducer, we perform the numerical 
simulation in two steps: 

Transducer Computation 

Since the non-linearities of the acoustic field near the 
transducer can be neglected, we compute the acoustic 
pressure using the linear acoustic wave equation. 
Therewith, we fully take into account the fluid loading of 
the transducer. For modeling the electromagnetic transducer 
we consider all relevant non-linearities (updated 
Lagrangian formulation for the magnetic field, geometric 
non-linearity for the aluminum membrane and the non-
linear electromagnetic force term). 

3.4 Non-linear Wave Propagation 
Computation 

In a second run, we fully solve Kuznetsov's non-linear 
wave equation using the computed pressure near the 
transducer obtained from the first simulation step. 

The measured and simulated pressure signals in the focus 
region of the source are shown in Fig. 12. 

Figure 12: Comparison between measured and simulated 
sound pressure level in the focal region of the 

electromagnetic pulse source 

3.5 Sound Protection Shield 

As a result of increasing car traffic on highways or main 
roads the neighboring residents are complaining about the 
heavy traffic noise. Therefore, sound protection shields 
have to be built to provide a tolerable noise level. The 
shape of the sound protection shields as well as the material 
and thickness are parameters that may be varied to obtain 
an optimum solution. These parameter variations can easily 
be done by applying the finite element method. 

Figure 13: Setup of noise block and sound protection shield 

Figure 13 shows the setup of the given system. A noise 
block with a vibrating surface emits acoustic waves of a 
fixed frequency f=100 Hz. The sound protection shield is 

placed 2 meters in front of the noise block. The angle  as 
well as the bend height bendht are parameter that can be 
varied. To ensure free field conditions a Perfectly Matched 
Layer method is applied to the boundary of the 
computational domain. 
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Figure 14a: SPL with bend height 0.5 m 

Figure 14b: SPL with bend height 1.0 m 

Figure 14a and 14b show the simulation results for two 
variations of the bend height. Comparing the SPL results it 
is obvious that an increasing height of the sound protection 
shield results in decreasing sound pressure levels behind the 
shield. 

4 Conclusions

In this paper we first addressed some problems within 
computational acoustics when doing finite element 
calculations. These are frequency dependent discretization 
errors as well as damping of the propagation medium. 
Furthermore, we presented two useful tools, which are 
perfectly matched layers and non-matching grids. When 
performing calculations in the frequency domain, perfectly 
matched layers allow the ideal absorption of acoustic 
energy at the border of the computational domain. 
Therewith, they are useful for the treatment of open domain 
problems. Non-matching grids enhance the efficieny and 
accuracy of finite element calculations which ask for 
different mesh sizing in different subdomains. In the second 
part of the paper, practical engineering examples, based on 
a new finite element code, have been demonstrated. 

References  

[1] www.simetris.de 

[2] F. Ihlenburg, I. Babuska, SIAM J. Numer. Anal.,
34:315-358 (1997) 

[3] M. Ainsworth, SIAM J. Numer. Anal., 42:553-575 
(2004) 

[4] L. Bahr, M. Kaltenbacher, R. Lerch, Proceedings of the 
IEEE Ultrasonics Symposium, 1687-1690 (2005) 

[5] K. R. Waters, M. S. Hughes, G. H. Brandenburger, J. 
G. Miller, J. A. S. A., 108(5):2114-2119, November 
2000. Pt. 1. 

[6] B. Flemisch, M. Kaltenbacher, B. I. Wohlmuth, Int. J. 
Numer. Meth. Engng, 67(13):1791-1810 (2006) 

[7] G. Krump, “Concerning the perception of low-
frequency distortions”, Fortschritte der Akustik DAGA 
2000, Oldenburg, 486-488 (2000) 

Acoustics 08 Paris

8394


