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The problem of sound scattering by a Rankine vortex at small Mach number is considered. Despite the long 
history of the problem, solutions obtained by different authors still are not free from essential objections. The 
main difficulty consists in that the slow decay of the mean velocity field at infinity hinders the correct 
formulation of the problem. Most authors use a plane wave as the incident field, which is a solution of the 
governing equations in the leading approximation only. However, this field cannot unambiguously provide the 
second approximation, which is needed to determine the scattering field. The matter is that there are many 
incident waves which correspond to plane wave in the main approximation but differ in the second one and only 
physical statement is defined it. We suggest instead of the plane wave condition to pose the condition of a point 
source at large but finite distance from the vortex; it allows us to determine unambiguously the incident field to 
any approximation in Mach number. In the new formulation a correct solution of the problem of non-resonant 
scattering is obtained. Existing solutions for resonant scattering are analysed too and a result unifying the 
previous ones is found. 

1 Introduction

The problem of sound scattering by a two-dimensional 
circular vortex has received significant attention, because it 
is a basic problem of the theory of sound interaction with 
hydrodynamic flows. Three main approaches to deal with it 
can be distinguished.  
The first one is based on a solution for Lighthill’s equation 
with the source defined by the plane wave [1,2,3]. The 
expression for the scattering amplitude obtained in these 
papers is given by 

 f ~ 2 sin ctg
2

M  (1) 

Here  is the scattering angle; M is the Mach number, 
which is assumed to be small. Solutions of the problem 
without the singularity at =0 are obtained in [4,5].  
The second approach is based on a solution for Howe’s 
equation for the stagnation enthalpy [6,7]. The result 
obtained in [7] also possesses no singularity. The third 
approach to the scattering problem is based on the partial 
harmonic expansion of the plane wave [8,9]. Attempts to 
calculate the scattering field numerically have also been 
made [10,11,12].  
However, it appears (see [13]) that the abovementioned 
solutions are not free from essential objections. In all these 
papers the incident sound field is assumed to be a plane 
wave. The difficulties result from the fact that at small 
Mach numbers the plane wave condition can 
unambiguously provide only the leading-order term of the 
expansion of the incident field in Mach number (this 
corresponds to the situation when the total vorticity is zero), 
while to determine the scattering field one must know the 
higher-order terms in the expansion. Therefore, it is 
desirable to use the problem formulation that (i) is 
physically reasonable and (ii) unambiguously provides the 
higher-order terms in the expansion of the incident field in 
Mach number. 

Therefore, we propose to consider as the incident field 
the field of a point harmonic source placed at far but finite 
distance from the vortex. The point source model satisfies 
both abovementioned conditions. It should be noted that a 
point source model is also used in [2]. However, the main 
attention in that paper is paid to the case of a point source 
being near the vortex. The case of the point source being 
far from the vortex is, by analogy with the usual diffraction 
problems, substituted by a problem of plane wave 

scattering, i.e. the case of a point source at large but finite 
distance from the vortex has not, in fact, been investigated.  

There is also an important question about resonant 
scattering by the vortex. In [9] it is demonstrated that when 
the incident frequency coincides with a resonant frequency 
(i.e. the real part of an eigen-frequency) of the vortex, the 
scattering amplitude becomes of O(1), not O(M2) as for the 
case of non-resonant scattering. However, in [14] it is 
proved by using matched asymptotic expansions to O(M2) 
that although the resonant scattering amplitude increases, it 
does not attain to O(1). In §4 we demonstrate that both 
these results are correct. The resonant scattering amplitude 
may indeed be of order unity as is obtained in [9]. 
However, this occurs not at the incompressible vortex 
frequency, but at the exact compressible vortex frequency, 
which differs from the incompressible vortex frequency by 
terms of O(M4). If the incident frequency coincides with the 
eigen-frequency of the incompressible problem, then the 
real part in the denominator of the scattering amplitude 
does not vanish and one obtains the result of [14]. 
 Thus, in §2 the governing equations are considered. 
In §3 non-resonant sound scattering by the Rankine vortex 
in the weakly compressible fluid approximation is 
investigated in the new formulation. In §4 the result for 
resonant scattering that unifies the previous ones and 
resolves the contradictions between them is obtained.

2 Governing equations 

Let there be a Rankine vortex of radius  in a perfect 
(inviscid and non-heat-conducting) compressible fluid. In 
the cylindrical coordinate system (r, , z) it means that 
inside the circle of radius r =  centered at the point of 
origin, the z-component of vorticity is a constant 0 and the 
other components are zero. There is no vorticity outside the 
circle. The flow is supposed to be isentropic and 
independent of z.  
The propagation of the acoustic disturbances with the 
frequency 0 is governed by the linearized Euler equations 
(LEE). The solution for the LEE will be sought as a 
harmonic series: 

 0i i, , e ( )et n
n

n

p r t p r  (2) 

for the pressure and in a similar manner for the density and 
the components of velocity. That is, we follow the third 
(partial harmonic expansion) approach to solve the 
problem. 
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We will employ the dimensionless variables that are made 
such by using the values of the corresponding mean field 
variables at the vortex boundary (r= ), e.g. 

 0 0

0 0

2
2

rx , , M
a

 (3) 

etc. Here a0( ) is the sound speed at the vortex boundary. 
In the region x<1 (i.e., inside the vortex) the LEE can be 
reduced, when the O(M4) terms are neglected, to the 
following equation for the nth pressure harmonic: 

2 2
2 2 2

2 2

d 1 d1 0
d d

n n
n

p p nM x M p
x x x x

 (4) 

Here 
2 26 nn

n
const. When pn is 

known, the LEE enables us to determine the other variables 
straightforwardly. 
In the region x>1 (i.e., outside the vortex) we may 
introduce the velocity potential . The LEE can be reduced 
to the following equations for the nth velocity potential 
harmonic n: in the region near the boundary vortex (x~1), 
when the O(M4) terms are neglected, we obtain 

 

2 2

2 2

22
2 2 2 0

4 2

1 1

0

n n

n

M
x x x x

nM M
x x

 (5) 

Here 2 2 2
0 2n n M . In the region far away from the 

vortex (x>>1) the equation is as follows: 

 
22

2 2

d 1 d 1 0
d d

n n
n  (6) 

Here 2 2 2 2 42n n M M ; kr Mx . 
When n is known, the LEE enables us to determine the 
other variables straightforwardly. 

3 Non-resonant scattering 

Let there be a point source of sound (a mass source) at the 
point =kR, = . It means that in the right-hand side of 
Eq.(6) a source term appears, and the equation takes on the 
form  

22

2 2

d 1 d 1 ( )
d d 2

i n
n n

n
eq kR

R
 (7) 

Here q is the source strength, which from now on is set to 
be 1. The solution of this equation in the region <kR is as 
follows: 

 1( )
n n na J F H  (8) 

Here i (1)e ( ) / 4n
na i H kR , Jn( ) is the Bessel 

function and Hn ( ) is the Hankel function. 

The first term in Eq.(8) corresponds to the incident waves; 
the second term corresponds to the outgoing (scattered) 
waves. Thus, to determine the scattering field, it is 
necessary to determine the amplitudes Fn for all n. This can 
be done as follows. First of all, we obtain the solutions of 
Eq.(4) and Eq.(5) with the accuracy to the O(M4) terms. 
Each of these solutions contains two unknown constants. 
Three of these four constants are determined via the 
requirements that the solutions must be finite at r=0 and 
that the pressure and the radial component of velocity must 
be continuous at the vortex boundary. This leaves only one 
constant, say C, unknown. Note furthermore that as the 
coordinate x increases, the solution of Eq.(5) with the 
unknown constant C must transform into Eq.(8) with the 
unknown constant Fn. Van Dyke’s matching principle 
enables us to perform the matching of these solutions and 
thus to determine both C and Fn. The tedious calculations 
provide the following expression for Fn: 

 

2 1

4

sgn 16 1

1

( )

n

M n H / , n
F

O M , n
 (9) 

Thus, in the region k kR the sound field is as 
follows: 

0i2 1 1
1 1

i e sin
8

t( ) ( )M H ( kR )H ( kr )  (10) 

 0

i
i1e e

4i

n
n i t( )

n

H kR J kr  (11) 

The second term in Eq.(10) constitutes the proper scattering 
field and has been correctly obtained by all researchers. It is 
the first term that caused the most trouble. This term is due 
to the refraction of sound on the slowly decaying mean 
velocity field, and there has been quite a controversy about 
how it must be calculated. The plane wave condition results 
in the necessity to compute multiple integrals that are not 
correctly defined. Different authors transform the multiple 
integrals into different iterated integrals and therefore 
obtain different, contradicting expressions for the refracted 
field . A more detailed discussion of this can be found in 
[13]. The point source model delivers us from arising of 
such integrals and leads to the expression for the refracted 
field given by Eq.(11). 
It turns out that the sum of the series in Eq.(11) can be 
analytically determined in the region k kR  
[13]. The Bessel and Hankel functions are exponentially 
small when  is less than the argument of the function; 
therefore, the Hankel function in the series may be replaced 
by its large argument asymptotic form: 

2 42( )
4

i n i kR
in i t

n

e J kr e e
i kR

 (12) 

Then we use the Schläffli integral representation for the 
Bessel function, change the order of summation and 
integration, calculate the geometric progression and finally 
perform the integration by making use of a saddle-point 
method. As a result, we obtain that in case  is not close to 
0,  or 2   
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2
2

( ) cos 4

22
ikr ii M ikr K MKe e ctg e

kr
(13) 

 42
4

i t i kReK e
i kR

 (14) 

The first term in Eq.(13) is a quasi-plane wave, incident on 
the Rankine vortex. The second term constitutes a refracted 
outgoing cylindrical wave. Outside the considered region 
k kR  the original expression (see Eq.(11)) 
must be used.  
In case  is close to 0,  or 2 , a pole of the integrand of the 
Schläffli integral becomes close to a saddle point. The 
situation can be dealt with analytically and gives a 
cumbersome expression via the error integrals, resulting in 
the absence of singularities at these angles, as has already 
been obtained in [4,5,7]. 

4 Resonant scattering 

The Rankine vortex is known to be an oscillatory system 
that can emit sound in a compressible fluid [9,15]. Sound 
scattering may cause resonant excitation of oscillations and 
the scattering field (re-emission by excited degrees of 
freedom) may increase by many times. In this case, eigen-
frequencies of the system become poles of the scattering 
amplitude. Since the eigen-frequencies of the emitting 
vortex have imaginary parts (that correspond to the 
instability – see [9,15]), the denominator of the scattering 
amplitude does not vanish identically at the real-valued 
incident frequency, and the amplitude is given by 

 nF ~
i

i
n

n n

 (15) 

Here  is the dimensionless incident frequency; n and n 
are, correspondingly, the real and imaginary parts of the 
dimensionless eigen-frequency. Eq.(15) is obtained in [9], 
where n~M2n is an increment for each unstable harmonic, 
calculated for the first time for n=2 in [15]. This structure 
of the solution demonstrates that the amplitude of the 
stationary solution is finite; the situation is analogous to 
scattering by quasi-discrete levels of energy in quantum 
mechanics. The resonance scattering is possible only for 

2n  (eigen-oscillations of the vortex exist for these n). 
Non-resonant scattering for these harmonics is small (it is 
of O(M4) or smaller) and can be neglected in comparison 
with the first mode. As it follows from Eq.(15), when the 
incident frequency coincides with n the scattering 
amplitude is of order unity, which is larger than its non-
resonant contribution (9). In [14] this conclusion is 
meticulously analyzed with the accuracy to O(M2) and it is 
shown that when the incident frequency  coincides with 
the eigen-frequency of the incompressible Rankine vortex 

n=n–1, the scattering amplitude is smaller than unity; for 
example, in the case of n=2 it increases only to the value 
~M2, and not to the unity. This, at the first sight, renders the 
resonant scattering inefficient. However, it turns out that 
the strong resonant scattering does indeed take place; the 
resonance occurs not at the incompressible vortex eigen-
frequency, but at the compressible vortex eigen-frequency. 
Let us consider the problem in more detail. 

Let us restrict ourselves to the case n=2. To determine the 
scattering amplitude, the O(M4) terms are necessary; 
therefore, we must derive from the LEE the equations, 
analogous to Eqs.(4)–(6) but valid with the accuracy to 
O(M4). To determine the compressible vortex eigen-
frequency, the coefficient a2 in Eq.(8) must be set equal to 
zero, i.e. we have to consider the case when only the 
outgoing waves are present. Performing the asymptotic 
matching, analogous to the non-resonant case, we obtain for 
this frequency: 

 

2

2

4

1
12

67 1 ln
1152 16 32 192 16 2

M

C i MM
 (16) 

Here C =0.5772… is the Euler constant and  is the heat 
capacity ratio. This expression coincides with that of [15]; 
it should be noted, however, that there seems to be a 
misprint in [15]: the coefficient in the first term in the 
parentheses must be 67/1152, not 67/1162. 
Calculation of the scattering amplitude for the sound wave 
with the frequency  close to the resonant frequency 2 
gives 

2

2

i
32

67 1 iln
1152 16 192 16 2 32

a
F C M w

 (17) 

 
2

41
12
M wM  (18) 

It is manifest that the resonance scattering amplitude in 
Eq.(17) is indeed of O(1) and not of O(M2), and has the 
structure exactly described by (15) (as it has been predicted 
in [9]). However, the resonance, obviously, occurs at the 
frequency close to that of Eq.(16), i.e. the compressible 
vortex eigen-frequency. If the incident frequency  
coincides with an eigen-frequency of the incompressible 
vortex (i.e., coincides with that of Eq.(16) in the leading-
order terms), the largest term in the denominator of Eq.(15) 
is – 2~M2, and the numerator 2~M4 does not cancel. 
Therefore, the strong resonance does not occur at the 
incompressible eigen-frequency and the scattering 
amplitude is, obviously, of O(M2), as has been predicted in 
[14]. 

5 Conclusion 

The paper is dedicated to investigation of the well-known 
problem of long-wave sound scattering by the Rankine 
vortex. The problem is basic for investigation of the sound-
vortices interaction, but there was some confusion so far. A 
new formulation is proposed, which is physically and 
mathematically correct; namely, sound scattering from a 
point harmonic source placed at large but finite distance 
from the vortex. 
In the new formulation, the exact solution of the problem of 
non-resonant sound scattering by the Rankine vortex in the 
weakly compressible approximation is obtained. The 
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scattering field in the region outside the vortex does not 
possess a singularity at any scattering angle. 
Resonant scattering is considered in the new formulation 
(with the point source) and the exact solution is obtained, 
which unifies the previous results and resolves the existing 
contradiction between them. 
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