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This paper presents investigations of the acoustic pulse propagation in rigid porous media. Transmission 
measurements of acoustic pulses through granular materials were performed using a specially constructed 
vertically installed standing wave tube. First, material microstructure and pulse durations were adapted to 
investigate the influence of viscous and inertial effects on pulse propagation. Semi-empirical time domain 
equations employing two viscous and two thermal relaxation times were solved numerically to predict the 
impulse response of the granular materials. 
Comparison between the model predictions and data were undertaken. Accuracy and computational time 
required for the numerical simulations have been estimated and compared with that required for a simpler model 
implementation.  

1 Introduction 

Most theories of wave interaction with porous materials are 
formulated in the frequency domain, but interest in time 
domain models is growing due to potential applications 
such as finite-difference time-domain (FDTD) simulation 
of outdoor sound propagation phenomena in the presence of 
an absorbing surface. However, model and numerical 
procedures for realistically incorporating interactions with 
porous ground surfaces remains problematic Ground 
interaction could be incorporated into an FDTD calculation 
in two ways: developing a time domain counterpart to a 
frequency domain impedance boundary condition, [1, 2] or 
explicitly calculating the sound wave propagation into the 
porous medium [3, 4, 5]. 
For the last approach the time domain analogue of the 
Zwikker and Kosten model [6] can be used but it is not 
clear whether these simple time-domain equations are 
generally realistic for porous granular materials. On the 
other hand, frequency domain microstructural models as the 
ones developed by Attenborough [7] are not analytically 
transferable into the time domain. Wilson et al. employed 
an explicit calculation method adopting time domain 
equations based on modelling viscous and thermal diffusion 
in porous material as relaxation processes [8, 9]. However 
this model does not allow matching physically correct low 
and high frequency limits [10] with a single pair of viscous 
and thermal relaxation times. In this work, FDTD 
simulations based on the semi-empirical time domain 
model formulated in [11] are presented. The model, 
originally formulated in frequency domain, can be seen as a 
generalisation of [9] and requires two viscous relaxation 
times and two thermal relaxation times to match correct low 
and high frequency limits. It provides two sets of time 
domain equations depending on the values of viscous and 
thermal shape factors, M and 'M  respectively.  
Particular attention is given to granular materials and their 
acoustic pulse response. A vertically installed impedance 
tube has been built which is specially designed for 
transmission measurements in time domain. The pulse 
response of different granular materials has been 
investigated for long as well as short pulses and the results 
of FDTD simulations are compared with data. 
The paper is organised as follows. In section 2, frequency 
domain impedance measurement results on packings of 
spherical particles are presented. These measurements were 
necessary to perform in order to validate the frequency-
domain semi-empirical model and the chosen set of 
material parameters. In section 3 the numerical methods 
used for the solution of the time-domain equations are 
described. Section 4 contains description of the 

experimental set-up used for the pulse transmission 
measurements and comparisons between the data and the 
model predictions. Main findings and future work are 
summarised in the conclusion. 

2 Model validation in frequency 
domain 

Reflection and absorption coefficients of the packings of 
spherical particles have been measured for comparison with 
the model predictions. In order to make measurements on 
granular materials a vertical impedance tube was built. This 
tube has a diameter of 0.104 m and a variable length, 
depending on the chosen set up, of 0.94 and 2.10 meters. 
According to the British Standards [12, 13], with a 
microphone spacing of 0.095 m, this tube allowed 
measurements in the frequency range between 200 Hz and 
1400 Hz. The set up is shown in Fig. 1. 
The transfer function method was used to evaluate the 
reflection and absorption coefficients. 
In order to determine the reflection coefficient R, the 
following relationship was used: 
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where k is the wavenumber, H12 is the transfer function 
between the two microphones, z1 and z2 are the distances of 
microphone 1 and microphone 2 from the surface of the 
sample respectively. The absorption coefficient A was 
determined using the following expression 

 21A R= −  (2) 
The samples were chosen to be the closest approximation to 
a rigid packing of spheres. Marbles, two types of lead shot 
and sand were tested for this work. 

 
Fig. 1 Impedance tube set-up. 
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To compare the data with the model predictions, the 
knowledge of the following six material parameters is 
necessary: tortuosity α∞ , porosity φ , static flow resistivity 
σ , viscous characteristic length Λ , thermal (or entropic) 
characteristic length eΛ  and thermal permeability 'k . The 
only measured parameter was the porosity, whereas the 
other parameters were evaluated using the cell model [14]. 
In agreement with other authors [15], a value of viscous 
shape factor M greater then 1 was found for the packings of 
spheres. Parameters of the samples are summarised in Table 
1. Thanks to the correlation between pore size and critical 
angular frequency 
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investigation in the whole range of frequencies was made 
possible by changing the size of the spheres. Investigations 
at the low frequencies cωω < , where viscous effects 
dominate, was possible using small particles (sand). Higher 
frequency range cωω > , where inertial effects are 
stronger, has been investigated using bigger spheres 
(marbles and lead shot). A good agreement with the 
frequency domain data and the model formulated in [10] for 
the case M>1, M’>1 has been found which is demonstrated 
in Fig. 2. The model utilises the following equations for 
complex density and complex compressibility functions 
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where two pairs of viscous 2,1τ  and thermal 

2,1,eτ relaxation times are determined as 
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3 Semi-empirical time domain model 
and its numerical implementation 

Inverse Fourier transformation of momentum conservation 
and continuity equations with functions Eq.(4) and Eq.(5) 
leads to the following set of time-domain equations: 
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where 
0

b ϕ
α ρ∞

= , 
φ
γ 0P

K = . For further convenience the 

equations are formulated for pressure P and the volume 
averaged particle velocity V (in [10] pore averaged velocity 
was used). 
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Fig. 2 Comparison between model, Eq.(4) to Eq.(7), 
predictions (solid line) and data (dashed line) for the 
reflection coefficient. Hard backed layer of lead shot, 

thickness of 0.04 m. 
Parameters of the material are given in Tab. 1. 

Looking at a single convolution integral that appears in 
both equations, we can write: 

 ( )
( )

( )1 'exp ' '
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t

c
t tI t g t dt

t t τπτ−∞

−⎛ ⎞= −⎜ ⎟
⎝ ⎠−∫ (10) 

where ( )g t  is one of the field variables Px∂  or Pt∂ . For 
a numerical implementation, the field variable is calculated 
at discrete time steps and therefore the integration must be 
formulated as a discrete summation. It would be consistent 
with the finite-difference approximations to assume that the 
acoustic field variables vary only a little over each time step 

tΔ . So, using the simplest assumption that ( )g t  is constant 
over each time step, it is possible to say that 
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where t n t= Δ  and ( )xδ  is 1 for 0 1x< ≤  and 0 
elsewhere. Substituting Eq.(11) into Eq.(10), the 
convolution integral becomes 
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Replacing the variable 't  by 
'nt t

z
τ
−

=  and 

decomposing the integral in two parts the following 
expression can be obtained 
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where two Gaussian integrals are easily recognizable and 

are equal to 
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respectively. Finally we can say that the generic 
convolution integral is given by 
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This approximation accurately converges to the solution if 
the stored past values of ( )g t , used to convolve with the 
erf-function, corresponds to a past time that is larger than τ  
[5]. The FDTD scheme used in the present work is based on 
a spatial grid in which the velocity is offset from the 
pressure by one-half grid interval. This kind of scheme is 
known as staggered spatial scheme, the one-dimensional 
case of which is illustrated in Fig. 3. 
The stability condition (Courant stability condition) of this 
scheme is given by 

 1tc
x
Δ
Δ

 (15) 

where xΔ  is the spatial step and tΔ  is the time step. 
Because of the aliasing problem, it is suggested to use at 
least fifteen spatial steps per wavelength λ  of the signal, 
[16], ( / cc fλ = , where cf  was the central frequency of the 
signal). It is also important to take into account that the 
above condition is not the only one to be satisfied for a 
good convolution integral approximation. It is imperative 
that the time step is much smaller than the smallest 
relaxation time used in the model. 

 
Fig.3 Spatially staggered finite difference scheme. 

The solid line is the boundary between the two regions: air 
and porous medium. Triangles are velocity nodes and 

circles are pressure nodes. 

For the derivative approximations, a forward time and 
backward space approximation were implemented. 

Following the scheme, one can see that the mass buoyancy 
b and the bulk modulus K must be stored at locations of 
pressure nodes. In air, the expressions used for the mass 
buoyancy and the bulk modulus are 1

0b ρ −=  and 
2

0 0 0K P cγ ρ= =  whereas in the porous medium they are 

0
b φ

ρ α∞
=  and 0P

K
γ
φ

= . Others parameters that must be 

stored are the relaxation times mτ  and me,τ . Because of 
the chosen scheme, the values of the mass buoyancy and 
viscous relaxation times need to be defined at the spatial 
nodes on the boundary between air and the porous medium. 
For the mass buoyancy, the averaged value between the 
mass buoyancy of air and porous medium was used. For the 
viscous relaxation times it was convenient to define a 

relaxation frequency 1
v

v
f

τ
= . Even though the viscous 

relaxation time in air is infinite, the relaxation frequency is 
zero, which allows calculations of the averaged relaxation 
frequency between air and porous medium. 

Samples Lead Shot Marbles 
Radius [m] 31.55 10−⋅  37.70 10−⋅  

φ  0.36 0.40 

α∞  1.89  1.75  

σ  [ 2Pa s m−⋅ ⋅ ] 33.01 10⋅  76.26  

Λ  [m] 44.02 10−⋅  32.37 10−⋅  

M  1.57  1.48  

1τ  [s] 31.50 10−⋅  25.09 10−⋅  

2τ  [s] 37.51 10−⋅  12.27 10−⋅  

eΛ  [m] 45.62 10−⋅  33.42 10−⋅  

'k  [ 2m ] 81.60 10−⋅  76.02 10−⋅  

'M  1.12  1.03  

1eτ  [s] 22.04 10−⋅  17.10 10−⋅  

2eτ  [s] 31.64 10−⋅  25.69 10−⋅  
*τ  [s] 34.51 10−⋅  11.24 10−⋅  
*

eτ  [s] 33.20 10−⋅  28.82 10−⋅  

Table 1 Samples and their characteristic parameters. 
Parameters with * are concerning to the Wilson et al model 

4 Time domain measurements and 
comparisons with model predictions 

The following experiment has been conducted in order to 
test the time domain model. The measurements set up is 
shown schematically in Fig. 4. 
A theoretical “Mexican hat” pulse f(t) was used for the 
measurements: 
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The value of 0 3000ω =  rad/s was chosen to generate a 
pulse with duration of 3 milliseconds and central frequency 
equal to 675 Hz. The wavelength, which corresponds to this 
frequency, is much larger than the largest pore size in 
materials used thus allowing the use of the plane wave 
based model. 
Using Matlab the function (16) was converted into a wave 
file, which was then uploaded into the B&K PULSE system 
and used as a source signal. The physical pulse was 
generated by the loudspeaker positioned at the bottom of 
the tube. The first microphone is located at a distance of 
0.905 m from the loudspeaker and at 0.035 m from the 
surface of the sample. The sample holder is 0.10 m long 
and the second microphone is located at a distance of 0.017 
m from the first one. The rigid termination at the end of the 
tube is 1.20 m far away from the second microphone. 

 
Fig. 4 Set up for time domain measurements. 

Thanks to the combination of the pulse duration and the 
tube length, it was possible to distinguish clearly between 
the transmitted pulse and the one reflected by the rigid 
termination. Using the same set up, a series of 
measurements were taken. The first measurement, without 
the sample, was taken to record the signal generated by the 
loudspeaker (obviously different from the analytical one 
due to the loudspeaker response) in order to use in the 
numerical simulations. The other measurements were taken 
using different samples, where incident pulse, reflected 
pulse and finally the transmitted pulse were recorded in 
order to compare the data with numerical results. 
Fixing the signal and varying the size of the spheres 
allowed investigations of the model performance in a range 
of pulse durations. According to the stability condition and 
the relaxation time values of the tested materials (Table 1), 
the following time and spatial steps were implemented in 
the code: 2.03t sμΔ =  and, 3.5x mmΔ = . The experimental 
set- up was reproduced in the numerical code. By storing 
the values of the pressure field at the nodes correspondent 
to the microphones positions, a comparison between these 
records and the data has been made. Furthermore, 
comparisons between the new model and the one used by 
Wilson et al. [5] have been performed. 

For the model proposed in [5] the knowledge of only three 
parameters (porosityφ , flow resistivity σ  and tortuosity 
α∞ ) is required. The viscous and the thermal relaxation 
times are defined using the following equations 

 02ρ ατ
σφ

∞=  (17) 

 2
e pr BN sτ τ=  (18) 

where Bs  is a pore shape factor which is assumed to be 
equal to one here. Parameters for the new model are listed 
in Table 1. Two simulations were performed using marbles 
and lead shot. Results of these simulations are shown in 
Fig. 5 and Fig 6. As one can see good agreement between 
predictions of both models and the data was found. In the 
case of large spheres (marbles) the new model works better 
than the one proposed by Wilson et al., whereas for the 
smaller spheres the predictions of the two models are 
almost indistinguishable. For a quantitative comparison of 
both models, the averaged deviations of the predicted 
pressure values from the data points were evaluated for 
both transmitted and reflected pulses. For marbles, the new 
model deviations are around 3% and a 1% lower than those 
for the Wilson et al. model, for the transmitted and 
reflected pulse respectively. 
In the case of lead shot, the agreement is better for the 
reflected pulse only, with 7.5% lower averaged deviation 
from measured data. For the transmitted pulse, [5] gives 
better agreement with the measurements due mostly to the 
slight time delay of the data with respect to the new model 
prediction. 
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Fig. 6 Comparison between model predictions in time 
domain and measurements for a layer of marbles with 

thickness 0.1 m, other parameters are given in Tab. 1. Solid 
line – new model, dotted line – model [5], circles - recorded 

data. 

The computational time required by the new model is about 
20% longer compared to that needed by [5] as the number 
of convolution integrals has been doubled. This can be seen 

in Fig. 8 where relative difference 2 1

1

RT RT

RT

T T
T
−  between the 

time 1RTT required by [5] and the time 2RTT required by the 
new model is shown. 
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Fig. 7 Comparison between model predictions in time 
domain and measurements for a layer of lead shot with 

thickness 0.04m, other parameter are given in Tab. 1. Solid 
line- new model, dotted line – model [5], circles -recorded 

data. 
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Fig. 8 Comparison of computational time required by the 
new model and model [5]. The required computational time 

was recorded every 150 time steps. 

5 Conclusions 

The new time domain semi-empirical model has been 
presented and numerically implemented in order to describe 
the acoustic behaviour of granular materials. It showed 
good agreement with the transmission and reflection 
measurements on packings of different size spheres. When 
compared to a simpler model described in [5], the new 
model is shown to require more computational time but to 
give a slightly improved agreement with the data for a 
larger size spheres. More measurements with different 
pulse durations are planned in the future in order to clearly 
demonstrate the advantages and the disadvantages of the 
new approach. 
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