The salience of interaural temporal disparities (ITDs) conveyed by high-frequency signals is determined by the temporal features of their ongoing envelopes

Constantine Trahiotis and Leslie Bernstein
University of Connecticut Health Center, Departments of Neuroscience and Surgery (Otolaryngology), 263 Farmington Avenue, Farmington, CT 06030-3401, USA

Many studies of binaural hearing reveal that envelopes of complex, high-frequency stimuli convey useful interaural time differences (ITDs). Envelope-based ITDs have, typically, been found to be less “potent” than those conveyed by low-frequency waveforms. When considering such findings, Blauert, in his classic textbook, noted that monaural, peripheral processing would result in 1) low-frequency inputs to the binaural processor that are essentially half-wave rectified versions of the input waveforms and 2) high-frequency inputs that are essentially full-wave rectified versions of only the envelopes of the input waveforms. Taking this into account, Blauert, echoing Colburn and Esquissaud (1976), surmised that low-frequency signals would ultimately convey “more distinct time cues” having greater “transient features” than would high-frequency signals and, therefore, be expected to provide more precise ITD information. By using high-frequency “transposed” stimuli having envelopes constructed to provide “more distinct time cues” we have shown in a variety of experimental contexts that the potency of envelope-based ITDs, can rival that measured with low-frequency stimuli. Our most recent experiments use “raised sine stimuli” in order to vary directly the temporal features of the envelope waveform including its “sharpness,” “off-time,” and interaural cross-correlation function. The new data will be discussed in terms of Blauert’s insight.