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The present study follows recent works dealing with the analytical model of an acoustic field in fluid-filled 
waveguides with rough walls. In these works, the acoustic field is obtained from the coupling between Neumann 
eigenmodes of the regularly shaped waveguide which bounds outwardly the rough walls of the waveguide 
considered, using integral formulation with suitable Green function. The effect of the roughness is expressed in 
such a way that two intermodal coupling mechanisms are highlighted: a bulk coupling and a surface coupling, 
the first one depending on the depth of the roughness and the second one depending in addition on the local 
slope. Moreover, a phonon relation is involved when the rough profile is periodic. The aim of the present study 
is to account for the thermo-viscous boundary layer effects through eigenmodes which satisfy appropriate mixed 
boundary conditions, leading to a better understanding of the physical mechanisms when resonances and phonon 
relationship are involved. 
  

1 Introduction

Rough surfaces are of industrial interest, in the aim of 
improving the wetting of the glue in bounded structures for 
example. Guided waves like Lamb waves in solid structures 
are very useful to control such structures and may give 
some information on the roughness of the surface then on 
the quality of the wetting [1-3]. Former theoretical and 
experimental studies have permitted to bring to the fore a 
decay of a Lamb mode, with a probable energy transfer 
between modes [4-6]. 
Recent works [7] provide a first analytical approach of an 
acoustic field in fluid filled waveguides with rough wall. 
This approach departs from these available until now 
because it does not make use of the so-called multi-modal 
approach. In these works, the acoustic field is obtained 
from the coupling between Neumann eigenmodes of the 
regularly shaped waveguide which bounds outwardly the 
rough walls of the waveguide considered, using integral 
formulation with suitable Green function. The effect of the 
roughness is expressed in such a way that two intermodal 
coupling mechanisms are highlighted: a bulk coupling and 
a surface coupling, the first one depending on the depth of 
the roughness and the second one depending in addition on 
the local slope. Moreover, a phonon relation is involved 
when the rough profile is periodic. 
The aim of the present study is to account for the thermo-
viscous boundary layer effects through eigenmodes which 
satisfy appropriate mixed boundary conditions, leading to a 
better understanding of the physical mechanisms when 
resonances and phonon relationship are involved. 

2 The fundamental problem 

The fluid-filled waveguide considered here is assumed to 
be limited by two parallel rigid plates having two 
dimensional shape perturbations (three-dimensional 
problem). The fluid plate with rigid, regularly shaped 
surfaces 0z  and z , which encloses the real 
waveguide, is characterized by its thickness , the inner 
plate surrounded by the real waveguide is characterized by 
its thickness d  (see Fig .1). The depth of the small shape 
deviations are respectively denoted yxh ,1  and yxh ,2  at 

11 hz  and 22 hz . 

In order to account for the dissipation phenomena both to 
provide a better approach of the physical mechanisms when 
resonances and phonon relationship are involved and to 
show the relative importance of the dissipation phenomena 

compared to those linked to the diffusion to the roughness, 
thermo-viscous boundary layer effects are accounted for 
through eigenmodes which satisfy appropriate mixed 
boundary conditions. 
Therefore, the fluid is characterized by its density 0 , the 
adiabatic speed of sound 0c , its shear viscosity coefficient 

0 , its thermal conductivity coefficient 0  and its specific 
heat ratio , and its heat capacity at constant pressure per 
unit volume PC . 

The motion is supposed harmonic with  the angular 
frequency (the time dependance being )exp( ti ). 
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Fig.1 Geometry of the fluid-filled waveguide. 

2.1 The dissipation phenomena 

Considering the interior problem mentionned above, losses 
must be taken into account when the frequency is 
monitored to make the field resonant (or one or several 
modes resonant) because the solutions must behave 
accurately, and therefore it is important to express 
adequately the dissipation processes, namely the viscous 
and thermal effects in the boundary layers near the rigid 
walls. In the problems considered herein, explicit 
representations of the acoustic field, taking into account the 
effect of viscosity and thermal conduction, implies that 
several operations and approximations are carried out in the 
derivation of the appropriate basic equations involved as 
well as in their solutions. Then, the thermo-viscous 
boundary layer effects are taken into account through 
eigenmodes, which satisfy appropriate mixed boundary 
conditions with the appropriate admittance Ŷ  which takes 
the form [8]. 
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the adiabatic wavenumber 0k  being defined by 00 ck . 
It is worth noting that the dissipative processes in the bulk 
of the fluid can be modelled by substituting the wellknown 
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appropriate complexe wave numbers to the wave 
number 0k . 

2.2 The fundamental problem 

The boundary conditions satisfied by the acoustic field on 
the perturbed surface of the waveguide are given by the 
requirement that its normal derivative on the surface 
vanishes at every point of the boundary. Denoting the local 
unit vectors 1n  and 2n  normal to the real surfaces of the 
waveguide respectively at the point 1z  and 2z  and pointing 
outside the fluid, the normal derivatives takes the classical 
form 
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(3.a) 
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The acoustic pressure field is governed by the set of 
equations including the propagation equation and mixed 
boundary conditions, which takes the following form 
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(4.a) 
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(4.c) 

where p̂  is the complex acoustic pressure and f̂  the bulk 
source factor and where the operator zyx ,,  is defined 
by 
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2.3 Modal wave decomposition 

In order to model the sound absorption in the thermo-
viscous boundary layers, the eigenvalue problem, 
associated to the problem Eq. (4), includes the mixed 
boundary condition which involve the admittance Ŷ  
Eq. (1). It is expressed as a 1-D transverse (in the 
z -direction) eigenvalue problem, namely 
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where the eigenvalues mˆ  are given by 
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mkm  being the eigenvalues for the problem with 
Neumann condition at the boundaries, and where the 
eigenfunctions (normalised and orthogonal) mˆ  are given 
by [9] 
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Expanding the pressure field p̂  on the eigenfunctions  mˆ , 

,ˆ,ˆ,,ˆ zyxAzyxp  (10) 

solution of the posed problem for the acoustic pressure field 
takes the following form, with the help of the orthogonal 
properties of the eigenfunctions, 
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with   
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(13) 

where the source term takes the form 
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and where the coupling factors take the following 
expressions 
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and 
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Two coupling mechanisms can be identified, namely the 
"bulk" or "global" modal coupling and the "boundary" or 
"local" modal coupling [10]. The term mb̂ , is related to 
the coupling of modes throughout the section of the guide 
(arising from the non orthogonality of the modes in the 
perturbed lateral dimensions of the guide due to the depth 
of the surface perturbation), while the operator mˆ , is 
related to the coupling through the slope and the depth of 
the surface perturbation itself. The behaviour of the 
acoustic pressure field is determined by these two 
mechanisms when propagating along the axis of the 
waveguide, the continuously distributed modes coupling 
along the distributed slight geometrical perturbation being 
accounted for in using method relying on integral 
formulation. 

3 Analytical results 

3.1 Approximate integral solution 

The coefficients mÂ  are determined using methods relying 
on integral formulation and modal analysis, and using the 
appropriate Green function mG  [8].  

When the waveguide is infinite and bounded by surfaces 
with one dimensional corrugations (two-dimensional 

problem 21, zzz  and ,0x ) the appropriate one-

dimensional Green's function corresponding to a point 
source located at a point in the waveguide is given by 
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The solution is obtained from an iterative method to express 
the amplitude mÂ  of each mode, the lower order (Born 

approximation), 0ˆ
mA being given by  

,;ˆˆ )0( xxGQxA mmm  (18) 

where mQ̂  is the strength of a monochromatic source 
which is assumed to be flush-mounted at 0x , related to 
the m -th mode; in fact, it represents the energy transfer 

between the external source and the eigenmode m . The 
first-order perturbation expansion 1ˆ

mA  is then given by 
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3.2 Phonon relation 

As far as spatial periods , for a periodic roughness, are 
concerned, relationships between both the acoustic 
wavelengths along the x -axis (

mm xx k2 for mode m  

generated by the source and xx k2  for modes  

created by the scattering on the corrugation) and the length 
of the spatial period  appear, involving a phase matching 
which emphasizes the interference processes (phonon 
relations [11]), namely (for example) 
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i.e., using Eq. (12), 
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and showing therefore a strong coupling between the 
primary wave (wavenumber 

mxk ) and the counter-

propagating secondary wave (wavenumber xk ) for this 

example. 
 

Fig.2 Dispersion curves (solid lines) of the guide with 
smooth interfaces and curves (dashed lines) corresponding 

to the phonon relation (21). 
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4 Numerical results 

4.1 Modes coupling 

The roughness profile is a sawtooth profile. The corrugation 
starts at the abscissa 00x , and length  of the 
corrugation is such as 8230k  which corresponds to 

200N  teeth and to 131 . The heights of the teeth 
are such as 005.0dh .  

x

z
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h

 
Fig.3 Sawtooth profile. 

For 30.10cfd , the dashed line (Fig .2) which represents 
the phonon relation (20,21) for 1m  has an intersection 
with the dispersion curve of the regular-shaped guide 
corresponding to 0  (labeled 0m  on the figure). 
Therefore, when the source creates the mode 1m , a 
strong coupling appears with the mode 0 . This is the 
situation presented in Fig .4 and Fig .5 showing the 
modulus of the normalised amplitudes calculated at the 3rd 
order perturbation expansion for a periodic sawtooth profile 
(Fig .3), without dissipation (blue curve) and with 
dissipation (red curve). It is assumed that, inside the two-
dimensional waveguide bounded by two parallel plates, the 
only mode created by the source is mode 1m  and that the 
frequency is such as 31.10cfd  with 5.2d  so that 
the upper modes ( 2 ) are evanescent; the fundamental 
plane mode ( 0 ) is thus the only propagative mode 
created by coupling due to the corrugation.  
 
Due to the periodicity of the corrugation, periods appear in 
Fig .4 which are given by the following relationships (from 
the shorter period to the longer one) 
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The modulus of the normalized amplitude of the mode 
1m  decreases when the abscissa increase; it provides a 

small part of his own energy to the mode 0  by 
coupling. 

Dissipative
Non dissipative

 

Fig.4 Modulus of the normalized amplitude 03
0

ˆˆ
mAxA  

of the mode 0  for a sawtooth profile, as a function of 
the abcissa of the corrugation, without dissipation (upper 

blue curve) and with dissipation (lower red curve). 
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Fig.5 Modulus of the normalized amplitude 03
1

ˆˆ
mm AxA  

of the mode 1m  for a sawtooth profile, as a function of 
the abcissa of the corrugation, without dissipation (upper 

blue curve) and with dissipation (lower red curve). 

4.2 Phonon relation 

For the same waveguide, the modulus of the normalized 
amplitude of the mode 3  at the abscissa x , 
calculated to the 5th order of perturbation, is shown as a 
function of the frequency in Fig .6. The profile of the 
corrugation is sinusoidal and contains 200N  periods. 
The ratio of the heights of the sine shape and the thickness 
of the plate is such as 005.0dh . 

The amplitudes are calculated for a frequency included in 
the interval between (yellow band in Fig .2) 

50.10cfd and 20cfd , these limits of the interval 
corresponding to frequencies close to the cut off 
frequencies respectively of the modes 3  and 4 . 
Phonon relationships between the mode 3  and the 
modes 3,1,0 , and 2m  are in this interval. Another 
phonon relation concerning the mode 2m  with itself is 
also in this interval. 
The modulus of the normalized amplitude of the mode 

3  increases close to the frequencies 70.10cfd , 
72.10cfd , 80.10cfd  and 85.10cfd , which, 

according to Fig .2, are repectively the frequencies of the 
phonon relations between 3  and 0 , 3  and 

1 , 3  and 2m  and 3  with itself. 
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The phonon relation of the mode 2m  with itself is 
located at the frequency 60.10cfd  which is close to the 
cut off frequency of the mode 3 . 

 

Fig.6 Modulus of the normalized amplitude 05
3

ˆˆ
mAxA  

of the mode 3  for a sinusoidal profile, as a function of 
the frequency, without dissipation (upper blue curve) and 

with dissipation (lower red curve). 

5 Conclusion

A model describing the inter-modal couplings in three 
dimensional waveguides with non homogeneously-shaped 
walls (which includes the slopes and the depth of the 
corrugation), available in the literature when the dissipation 
phenomena are not accounted for (Neumann boundary 
conditions), is extended in order to take into account the 
losses inside the thermo-viscous boundary layers (mixed 
boundary conditions).  
The obtained results confirm the strong coupling when 
phonon relations occur, and emphasize the effect of the 
dissipative character of the fluid. In particular, the losses 
strengthen the decreasing of the amplitude of the mode 
created by the acoustic source. 
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