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In the finite element computation of unbounded acoustic problems, the domains must be of finite size
and artificial absorbing conditions have to be introduced in order to avoid reflections at the truncated
boundary. This communication proposes a new method in the frequency domain to generate efficient
absorbing boundary conditions without the need to consider high order derivatives on the boundary.
Moreover the approach is quite general and can consider media with mean flow. It needs the knowledge of
the dynamic stiffness matrix of only one element which can be obtained from any finite element software.
The final result is an impedance condition linking the forces and displacements on the boundary which
is determined numerically from a wave analysis of one element of the medium. Using this impedance
condition a finite element problem can be solved by standard methods. This is then applied to study an
example for a 2D acoustic problem with mean flow.

1 Introduction

Wave problems in unbounded media can occur in many
applications in acoustics and mechanics. For methods
solving the problem on a bounded domain like the finite
element method, it introduces the difficulty of an arti-
ficial boundary to get a bounded domain. This bound-
ary must be such that the energy crosses it without re-
flection and special conditions must be specified at the
artificial boundary to reproduce this phenomena. Gen-
erally these can be classified into local or global bound-
ary conditions. The first global method which has been
used for solving such problems was the boundary ele-
ment method. This method is well adapted for infi-
nite domains and is described in classical textbooks like
[1]. In the other approaches, the computational domain
is truncated at some distance and boundary conditions
are imposed at this artificial boundary. An example of
global boundary condition is the Dirichlet to Neumman
(DtN) mapping proposed by [2]. It consists in dividing
the domain into a finite part containing the sources and
an infinite domain of simple shape. The DtN mapping is
non local and every node on the boundary is connected
to all other nodes. Other methods are local and the
condition at a node involves only neighbouring nodes.
A first possibility of such approaches is the use of infi-
nite elements as proposed in [3]. It consists in developing
special elements with a behaviour at infinity reflecting
that of analytical solutions obtained for the same type
of problems. In the perfectly matched layer proposed
by [4], an exterior layer of finite thickness is introduced
around the bounded domain. The absorption in this do-
main is increasing as we move towards the exterior such
that outgoing waves are absorbed before reaching the
exterior boundary.

In the proposed method, the boundary condition is
described in term of waves but the final expression in-
volves only the variable and its derivative. The approach
is based on the waveguide theory for periodic media de-
scribed in [5, 6, 7]. Only information related to one pe-
riod, obtained from any standard FE software (the dis-
crete dynamic stiffness matrices and nodal coordinates)
are required to formulate the method. The advantage
of the method proposed here is that it can be applied
to media with complex behaviours. In section 2, the
methodology for determining absorbing boundary con-
ditions for finite size periodic media is described. In
section 3, an application is described to show the re-
sults of the method for the finite element computation
of acoustic propagation with mean flow.
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Figure 1: Periodic medium.

2 Absorbing boundary conditions

We suppose that we want to solve a mechanical prob-
lem on an infinite domain exterior to a bounded domain
Ωint. The infinite domain is approximated by the finite
domain Ω which is exterior to Ωint and is limited by
an exterior boundary Γext. Near this exterior boundary
the solution can be seen as composed of incident waves
denoted A+ and reflected waves A−. For a perfectly
absorbing boundary, one should have A− = 0. The ap-
proach proposed in this paper consists in studying this
problem by first considering the case of periodic media.
For this case, positive and negative waves and their am-
plitudes A+ and A− can be computed. Then an exact
boundary condition can be formulated for a half-plane
boundary. It is further shown how this condition can be
approximated by a local condition on the boundary.

2.1 Solution in a periodic medium

Consider an infinite two dimensional periodic medium,
as shown in figure 1. The elementary period is lim-
ited by the domain (x1, x2) ∈ [0, b1] × [0, b2]. A func-
tion U(x1, x2) defined on the two-dimensional periodic
medium can be decomposed as an integral of pseudo
periodic functions

U(x1, x2) =

∫ π
b2

−
π
b2

eikx2Û(x1, k, x2)dk (1)

where Û(x1, k, x2) is a periodic function in x2 with pe-
riod b2. From the inverse Fourier transform one also
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has

Û(x1, k, x2) =
b2

2π

+∞∑
m2=−∞

e−ik(x2+m2b2)U(x1, x2+m2b2)

(2)
From Eq.(1), one sees that the behaviour in x2 of the
general solution can be obtained from functions such
that eikx2Û(x1, k, x2) with Û(x1, k, x2) periodic in x2.
Along direction 1, we use a decomposition in Bloch
waves as it is usual in periodic media. Finally, the gen-
eral solution can be obtained from functions u(x1, k, x2)
= eikx2Û(x1, k, x2) such that:

u(x1, k, x2 +m2b2) = eikm2b2u(x1, k, x2)

u(x1 +m1b1, k, x2) = eim1μu(x1, k, x2) (3)

where m1 and m2 are integers, k ∈ R ∩

[
−

π

b2
,

π

b2

]
and

μ ∈ C.
The discrete dynamic equation of a cell (an elemen-

tary period) obtained from a FE model at a frequency
ω and for the time dependence e−iωt is given by:

(K − iωC − ω2M)q = f (4)

where K, M and C are the stiffness, mass and damping
matrices, respectively, f is the loading vector and q the
vector of the degrees of freedom (dofs). Introducing the

dynamic stiffness matrix D̃ = K− iωC− ω2M, decom-
posing the dofs into boundary (B) and interior (I) dofs,
and assuming that there are no external forces on the
interior nodes, yields[

D̃BB D̃BI

D̃IB D̃II

] [
qB

qI

]
=

[
fB
0

]
(5)

The interior dofs can be eliminated which yields

fB =
(
D̃BB − D̃BID̃

−1
II D̃IB

)
qB (6)

which can be written as

f = Dq (7)

It should be noted that only boundary dofs are consid-
ered in the following sections.

The periodic cell is assumed to be meshed with an
equal number of nodes on their opposite sides. The
boundary dofs are decomposed into left (L), right (R),
bottom (B), top (T ) dofs and associated corners (LB),
(RB), (LT ) and (RT ) as shown in figure 2. The longi-
tudinal dofs vector is defined as

ql =
t
[
tqL

tqR
tqLB

tqRB
tqRT

tqLT

]
(8)

where t means the transpose. Eq.(7) is rewritten as⎡⎣ Dll DlB DlT

DBl DBB DBT

DTl DTB DTT

⎤⎦⎡⎣ ql

qB

qT

⎤⎦ =

⎡⎣ fl
fB
fT

⎤⎦ (9)

Using the pseudo periodic condition Eq.(3) and the ef-
fort equilibrium at the bottom side of the cell, relations
between the transverse dofs are given by

qT = eikb2qB

fB + e−ikb2fT = 0
(10)
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Figure 2: A cell in the periodic medium.

Multiplying the third row of Eq.(9) with e−ikb2 , taking
the sum of the second and third rows of Eq.(9), using
Eq.(10), lead to

fl = [Dll − (DlB + eikb2DlT )(DBB +DTT

+e−ikb2DTB + eikb2DBT )
−1

×(DBl + e−ikb2DTl)]ql = Dlql (11)

Using the pseudo periodic conditions Eq.(3) also lead
to the following relations between longitudinal dofs

qR = eiμqL

qRB = eiμqLB

qRT = ei(μ+kb2)qLB

qLT = eikb2qLB

(12)

From the pseudo periodic conditions Eq.(12), it can be
seen that all components of the vector ql depend on the
set of dofs defined by qr =

t [tqL
tqLB ]. This can be

expressed as

ql =
(
W0 + eiμW1

)
qr (13)

where the matricesW0 andW1 depend on the wavenum-
ber k and are given by

W0 =

⎡⎢⎢⎢⎢⎢⎢⎣

I O

O O

O I

O O

O O

O eikb2I

⎤⎥⎥⎥⎥⎥⎥⎦ W1 =

⎡⎢⎢⎢⎢⎢⎢⎣

O O

I O

O O

O I

O eikb2I

O O

⎤⎥⎥⎥⎥⎥⎥⎦ (14)

The equilibrium conditions between adjacent cells are
given by

eiμfL + fR = 0
eiμfLB + fRB + ei(μ−kb2)fLT + e−ikb2fRT = 0

(15)
that can be written as(

eiμW∗

0 +W∗

1

)
fl = 0 (16)
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where (.)∗ denotes the operator of complex conjugate
and transpose.

Combining Eq.(11), Eq.(13) and Eq.(16), lead to(
A0 + eiμ(A1 +A2) + e2iμA3

)
qr = 0 (17)

where
A0 = W∗

1DlW0

A1 = W∗

0DlW0

A2 = W∗

1DlW1

A3 = W∗

0DlW1

(18)

The eigenvalue eiμ and the eigenvector qr are thus
solutions of a quadratic eigenvalue problem. It can be
easily shown that if eiμj is an eigenvalue for the wavenum-
ber k, e−iμj is also an eigenvalue for the wavenumber
−k. These represent a pair of positive and negative-
going waves, respectively. Thus, 2n eigensolutions of
Eq. (17) can be split into two sets of n+ and n− eigen-
solutions with 2n = n+ + n−, which are denoted by(
eiμ+

j ,q+
j

)
and

(
eiμ−

j ,q−j

)
respectively, with the first

set such that
∣∣∣eiμ+

j

∣∣∣ ≤ 1. In the case
∣∣∣eiμ+

j

∣∣∣ = 1, the first

set of positive-going waves must contain waves propa-
gating in the positive direction such that Re

{
iωqH

j fr
j

}
>

0 where fr
j is the reduced set of boundary force dofs of

left cells on right cells and is given by

fr
j =

[
fL

fLB + e−ikb2fLT

]
= W∗

0Dl

(
W0 + eiμjW1

)
qj (19)

In the second set of negative-going waves, the eigen-

value eiμ−
j is associated with waves such that Re

{
iωqH

j fr
j

}
< 0. With the eigenvector qj and the force component
of Eq.(19), we introduce the state vector

xj(k) =

[
qj(k)
fr
j (k)

]
=

[
qj(k)

(A1(k) + eiμj(k)A3(k))qj(k)

]
(20)

In this relation qj(k) is the eigenvector associated to
eiμj(k). One can also introduce

yj(−k) =
[

tpj(−k)(A2(k) + eiμj(k)A3(k))
tpj(−k)

]
(21)

In this relation pj(−k) is the eigenvector associated to
e−iμj(k) since we have seen that e−iμj(k) is also an eigen-
value of Eq.(17) for the wavenumber −k. It is possible
to compute the product yi(−k).xj(k) to show that

yi(−k).xj(k) = diδij (22)

di is a factor depending on the eigenvector i. This gives
orthogonality relations on the statevectors associated to
the eigenvalues.

2.2 Absorbing boundary conditions

Near the exterior boundary, the solution is described by
Eq.(1). Introducing the state vector x = t(tq, tf) and
decomposing this solution into the different waves, we
get

x(x1, x2) =

∫ π
b2

−
π
b2

x̂(x1, k, x2)e
ikx2dk

=

∫ π
b2

−
π
b2

j=2n∑
j=1

aj(x1, k)xj(k)e
ikx2dk (23)

The condition of outgoing waves means that there is no
incoming wave, so the amplitudes aj(x1, k) associated
with incoming waves must equal zero. This condition is
obtained by

y−l (−k).

j=2n∑
j=1

aj(x1, k)xj(k) = 0 for 1 ≤ l ≤ n− (24)

In this relation y−l (−k) are the vectors associated to the
negative going waves, given by Eq.(21). Using Eq.(22),
one gets a−j (x1, k) = 0 with 1 ≤ j ≤ n− for the am-
plitudes of the negative going waves. Introducing the
matrix Y with lines given by yl leads to

Y(−k).x̂(x1, k, x2) = 0 (25)

Decomposing now x̂ into its displacement and force com-
ponents, doing the same thing for Y(−k) with Y(−k) =
[Q(−k) F(−k)] leads to

Q(−k).q̂(x1, k, x2) + F(−k).̂f(x1, k, x2) = 0 (26)

then from Eq.(23)

f(x1, x2) = −

∫ π
b2

−
π
b2

F−1(−k)Q(−k)q̂(x1, k, x2)e
ikx2dk

(27)
From the inverse Eq.(2), one also has

q̂(x1, k, x2) =
b2

2π

+∞∑
m2=−∞

e−ik(x2+m2b2)q(x1, x2 +m2b2)

(28)
which leads to

f(x1, x2) = −
b2

2π

∫ π
b2

−
π
b2

F−1(−k)Q(−k) (29)

+∞∑
m2=−∞

e−ik(x2+m2b2)q(x1, x2 +m2b2)dk

Introducing the function

G(x2) = −
b2

2π

∫ π
b2

−
π
b2

F−1(−k)Q(−k)e−ikx2dk (30)

The final relation is

f(x1, x2) =
+∞∑

m2=−∞

G(x2+m2b2)q(x1, x2+m2b2) (31)

This is the impedance relation on the boundary ob-
tained with the assumption that there is no negative
going wave. This relation is the absorbing boundary
condition we were looking for. It can be computed from
the wave vectors and the force components associated
with them. Up to now everything has been written for
periodic media but it is clear that homogeneous media
are also periodic media and so all that has been said
applies also to homogeneous media.

Eq.(31) involves an infinite number of terms on the
boundary. For practical purposes we will use the ap-
proximate relations at various orders

f(x1, x2) ≈ G0q(x1, x2)

+
G1

2b2
(q(x1, x2 + b2)− q(x1, x2 − b2))

+
G2

2b2
2

(q(x1, x2 + b2) + q(x1, x2 − b2)− 2q(x1, x2))

+ . . . (32)
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with

G0 =

+∞∑
m2=−∞

G(x2 +m2b2) = −(F−1Q)(0)

G1 =
+∞∑

m2=−∞

m2b2G(x2 +m2b2) = i(F−1Q)′(0)

G2 =

+∞∑
m2=−∞

(m2b2)
2G(x2 +m2b2) = (F−1Q)′′(0)

(33)

which involves a finite number of nodes around the point
where the relation has to be written.

3 Example

3.1 Validation example

Consider as an example an acoustic element of size 0.01m
×0.01m or 0.05m×0.05m, a sound velocity c = 340m/s
and a plane wave excitation with an incidence angle
θ = 10o. The pressure is suppose given and we compare
its normal derivative given respectively by the analyti-
cal and the approximate Eq.(32). The relative errors at
point (0, 0) between these two quantities are plotted in
figure 3. It can be observed that the second order re-
lations are much better than the first ones as expected.
The comparison of the two sizes for the acoustic element
shows that the size 0.05m× 0.05m can reduce the accu-
racy of the solution for high frequencies. In these cases
it is better to use the small size for the element.

The error is also plotted versus the angle of incidence
of the plane wave in figure 4. The solution is accurate
(error less than 1%) for angles up to 10o for a zero order
condition and up to 30o for a second order condition.
Finally the error is plotted versus the distance along the
y axis for a pressure created by a point source at point
(−1, 0) and at the frequency 1000Hz. The reduction
in accuracy can be observed as we move along the y
axis leading to greater incidence angles. All these points
confirm the accuracy of the method proposed here.

3.2 Case with mean flow

The precedent method is applied here to the computa-
tion of an acoustic propagation problem with mean flow.
Sound propagation in a uniform moving medium can be
described by the following set of linear equations

∂p

∂t
+ v0.∇p+ ρ0c

2∇.v = q

∂v

∂t
+ v0.∇v +

1

ρ0
∇p = f (34)

where v is the particle velocity vector, p is the acoustic
pressure, v0 is the velocity vector of the fluid flow, c is
the sound velocity, ρ0 the density and q, f are source
terms. The wave equation on p is given, for a point
source excitation, by

Δp −
1

c2

(
∂

∂t
+ v0.∇

)2

p = −δ(x)δ(y) (35)
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Figure 3: Error versus the frequency for a plane wave
at 10o for an element size 0.01m × 0.01m (upper) and

an element size 0.05m × 0.05m (lower).

The analytical solution of this equation, with v0 = (vx, vy)
at an angle α with the point (x, y), is given by

p(x, y) =
i

4(1− M2)1/2
H0(ξ)e

−
ikMr cos α

1−M2 (36)

with

ξ =
kr

√
1− M2 sin2 α

1− M2
, M =

|v0|

c
(37)

For the finite element model, the elementary stiffness
and mass matrices of a rectangular element of size b1×b2

are given by

K =
b2

6b1
(1−

v2
x

c2
)

⎡⎢⎢⎣
2 −2 −1 1

−2 2 1 −1
−1 1 2 −2
1 −1 −2 2

⎤⎥⎥⎦

+
b1

6b2
(1−

v2
y

c2
)

⎡⎢⎢⎣
2 1 −1 −2
1 2 −2 −1

−1 −2 2 1
−2 −1 1 2

⎤⎥⎥⎦

+
1

2

vxvy

c2

⎡⎢⎢⎣
−1 0 1 0
0 1 0 −1
1 0 −1 0
0 −1 0 1

⎤⎥⎥⎦

M =
b1b2

36c2

⎡⎢⎢⎣
4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

⎤⎥⎥⎦

C =
b2vx

6c2

⎡⎢⎢⎣
−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2

⎤⎥⎥⎦
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Figure 4: Error versus the angle of incidence (upper)
and error versus the distance for a point source (lower).

+
b1vy

6c2

⎡⎢⎢⎣
−2 −1 1 2
−1 −2 2 1
−1 −2 2 1
−2 −1 1 2

⎤⎥⎥⎦ (38)

and the dynamic stiffness matrix can then be deter-
mined by D = K − iωC − ω2M.

Consider a square domain of size 0.4m×0.4mmeshed
with 80× 80 elements of size 0.005m× 0.005m. A point
source excitation is applied in its centre defined as the
origin of the coordinate system. The flow velocity is
v0 = (0.6c, 0) with c = 340m/s. The sound pressure
is computed at point (0.15m, 0.1m) and is presented in
figure 5. The classical boundary condition ∂p

∂n = ikp
ignoring the velocity of the fluid flow is also presented.
It can be observed that the present boundary condition
leads to much better results.

4 Conclusion

In this paper, a method to determine absorbing bound-
ary conditions for two-dimensional media has been de-
scribed. In the example presented, good agreements are
observed when compared with analytical solutions. In
any case, the proposed method is efficient and general
because it requires only the discrete dynamic matrices
which can be obtained by any standard FE software.
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Figure 5: Comparison of analytical and numerical
solutions
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