
A GWBEM method for high frequency acoustic
scattering

Emmanuel Perrey-Debain, Hadrien Bériot, Mabrouk Ben Tahar and
Catherine Vayssade
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This paper considers the problem of scattering of a time-harmonic acoustic incident wave by a hard
obstacle. The numerical solution to this problem is found using a GalerkinWave Boundary Element
Method (GWBEM) whereby the functional space is built as the product of conventional low order
piecewise polynomials with a set of plane waves propagating in various directions. In this work we
present strategies for finding the appropriate plane wave basis locally on each boundary element in
order to deal efficiently with very irregularly meshed structures exhibiting both large smooth scattering
surfaces as well as corners and small geometrical features. Numerical results clearly demonstrate that
these improvements allow the handling of scatterers with complicated geometries while maintaining a
low discretization level of 2.5 to 3 degrees of freedom per full wavelength.

1 Introduction

It is well known that the use of discrete (frequency do-
main) numerical methods for the solution of the Helmholtz
equation is limited to problems in which the wavelength
under consideration is not small in comparison with the
domain size. The limitation arises because conventional
elements, based on polynomial shape functions require
around ten variables per full wavelength. Following ear-
lier predictions of de La Bourdonnaye [1], it has been
found that drastic progress can be made by including a
plane wave basis in a collocation boundary element for-
mulation. This gave rise to the so-called ‘wave boundary
elements’(WBE) capable of containing many oscillations
[2, 3]. In practical terms, the results of this work showed
that, for any given amount of computational resource,
these WBE enable the supported frequency range to be
extended by a factor of 3 to 4 over conventional bound-
ary elements for two-dimensional cases. Though these
developments proved to be very successful, all the stud-
ies previously published involved the use of a constant

number of plane wave directions on regularly meshed
and analytically described smooth scatterers. Further-
more, the method’s performances depend on the number
and locations of the collocation points [3] and this is par-
ticularly relevant for tridimensional obstacles for which
the number of points must largely exceed the number
of variables [4]. This yields overdetermined systems
that require the use of adequate solvers. Because of
these limitations, the work carried out so far only rep-
resent the early developments in a new BEM approach.
In the present paper, we go one step further by tack-
ling more realistic engineering geometries. Our aim is
mainly to propose new strategies for finding the appro-
priate plane wave basis locally on each WBE in order to
deal efficiently with very irregularly meshed structures
exhibiting both large smooth scattering surfaces as well
as corners and small geometrical features. This paper
will show that these improvements allow the handling of
scatterers with complicated geometries while maintain-
ing a low global discretization level of 2.5 to 3 degrees
of freedom per wavelength.

2 Problem statement

We consider the scattering of an time-harmonic acoustic
incident wave φi by a bounded obstacle Ω′ in a bidimen-
sional homogeneous propagative medium Ω of character-
istic sound speed c0. Let κ = ω/c0 denote the associated
wavenumber; we aim at finding the scattered wave field
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Figure 1: The model scattering problem.

φs satisfying (e−iωt time-dependence)

Δφs + κ2φs = 0 in Ω , (1)

as well as the usual radiation condition,

lim
|x|→∞

√
|x|

(
∂φs

∂|x|
− iκφs

)
= 0. (2)

In this work, we shall consider Neumann type condi-
tions on the surface of the scatterer Γ = ∂Ω′, i.e., the
total field φ = φi + φs must satisfy

∂φ

∂n
(x) = ν(x), x ∈ Γ. (3)

Using a direct combined integral representation, the un-
known field φ(x) on Γ is found to be the unique solution
of the second kind integral equation [5]

Lφ =

(
1

2
+D + αH

)
φ = g on Γ\{C} (4)

where {C} is the set of corners of Ω′ and g stems for the
incident field and the radiation term ν,

g = φi + α
∂φi

∂n
+

(
S + αD∗ −

α

2

)
ν (5)

and S, D, D∗ and H stand respectively for the usual
single layer potential operator

Sφ(x) =

∫
Γ

G(x, y)φ(y)dγy , (6)

the double layer potential operator

Dφ(x) =

∫
Γ

∂G(x, y)

∂ny
φ(y)dγy , (7)
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its adjoint operator

D∗φ(x) =
∂

∂nx

∫
Γ

G(x, y)φ(y)dγy , (8)

and the hypersingular operator

Hφ(x) =
∂

∂nx

∫
Γ

∂G(x, y)

∂ny
φ(y)dγy . (9)

The kernel G stands for the free-space Green function
G(x, y) = i/4H1

0 (κ|x − y|) and ny (resp. nx) is the
inward normal unit vector at point y (resp. x). H1

0 de-
notes the Hankel function of the first kind of zero order.
The coupling coefficient α must have a non-zero imagi-
nary part to ensure the uniqueness of the solution. As
we are not dealing with very low frequency applications,
we shall take α = i/κ.

3 GWBEM formulation

3.1 Standard p-formulation

In the Galerkin method, we convert the original equa-
tion (4) into an equivalent variational formulation, i.e.
we consider the following problem (symbol ∗ denotes the
complex conjugate):

Find φ ∈ V such that

(ϕ∗,Lφ)Γ = (ϕ∗, g)Γ, ∀ϕ ∈ V , (10)

where V is an appropriate functional space (V = H1/2(Γ)
in this case) and (·, ·)Γ denotes the usual scalar product
on Γ. Following standard procedure [6], Eq (10) may
be integrated numerically by subdividing the boundary
into elements, over each of which the potential may be
expressed in terms of nodal values according to conven-
tional interpolation using Lagrangian shape functions,
i.e.

φ = NT a, (11)

where N is a vector containing the shape functions and
a is a vector containing the nodal potentials. The su-
perscript T denotes transpose of a matrix or vector. Al-
though this approach is usually implemented using low-
order polynomials (linear or quadratic), high-order basis
function are considered in this work in order to give a
fair comparison with the plane wave based approach. In
all cases, evenly spaced nodes in the parametric space
η ∈ [−1, 1] are used and p-order Lagrangian shape func-
tions take the generic form

Np
q (η) =

p+1∏
r=1,r �=q

η − ηr

ηq − ηr
for q = 1, . . . , p+ 1, (12)

where ηr = 2(r− 1)/p− 1 corresponds to the node loca-
tion.

3.2 Plane waves formulation

The wave boundary element discretization of (10) starts
with the introduction of a set of J nodes located on Γ,

N = {xj ∈ Γ, j = 1, . . . , J}. (13)

These points must coincide with the corners of Ω′ so
that C ⊂ N . We assume that the geometry of the scat-
terer Γj between two consecutive nodes xj and xj+1 is
known analytically, or can be simulated by appropriate
approximation methods (via Lagrange interpolation for
instance), i.e. there exists a regular function γj defined
on the reference interval [−1, 1] such that

Γj = {γj(η), η ∈ [−1, 1]}, (14)

with the convention that xj = γj(−1), xj+1 = γj(1)
and xJ+1 = x1. We introduce a set of Mj plane wave
directions ‘attached’ to each node xj . In this work, these
direction are chosen to be regularly distributed as

ζm
j =

(
cos(m2π/Mj + δθj)
sin(m2π/Mj + δθj)

)
, (15)

where m = 1, . . . , Mj and δθj defines the angular origin
of the wave basis directions. On each element Γj , the
potential φ is approximated as the following plane wave
expansion

φ(x) = P 0
j (x)w

T
j (x)Aj + P 1

j (x)w
T
j+1(x)Aj+1. (16)

The vector function wj(x) denotes the set of plane wave

wT
j (x) = 〈w

1
j (x), . . . , w

m
j (x), . . . , w

Mj

j (x)〉, (17)

where wm
j (x) = exp[iκζm

j · (x − xj)] is a propagative
plane wave traveling in the ζm

j -direction. The unknown

coefficients Aj = 〈A1
j , . . . , A

Mj

j 〉T can be interpreted as
the amplitudes of the associated plane waves. Functions
P 0

j and P 1
j must be sufficiently regular and chosen as to

ensure continuity of the potential on the boundary of
the scatterer. This condition is met by requiring that

P 0
j (xj) = P 1

j (xj+1) = 1, P 0
j (xj+1) = P 1

j (xj) = 0, (18)

so that at each node xj , the potential is only depen-
dent on Aj and can be easily recovered as φ(xj) = eT Aj

where eT = 〈1, . . . , 1〉. In order to satisfy the continuity
condition (18), it suffices to take

P 0
j (x) = N1

2 (η) and P 1
j (x) = N1

1 (η), (19)

where the correspondence between the point x located
on Γj and the parameter η is naturally given by x =
γj(η). Shape functionsN1

1 , N1
2 form the linear Lagrangian

basis which explicit form is given in Eq (12). For the
sake of illustration, the top of Fig 2 shows a typical
piecewise polynomial discretization for the acoustic po-
tential on the boundary line with 5 boundary elements.
On the bottom, the potential is expanded in the plane
wave basis which directions are ‘attached’ to the nodes
located at the extremity of the boundary line. For a
brief nomenclature, such a boundary element on which
the wave field is described by the plane wave expansion
(16) will be referred to as a 2-node WBE. Applying the
standard Galerkin weighting procedure, the weighting
functions are expanded in terms of the same set of wave
functions used in the expansion (16). This yields the
matrix system

LwA = gw, (20)

where A = 〈AT
1 , . . . ,AT

J 〉
T contains the amplitudes of

the plane waves basis functions. Here, we introduce the
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xj

xj+1

Figure 2: Discretization of the potential on the
boundary line. Top: Classical piecewise polynomials
approximation with 5 boundary elements; Bottom:
The plane wave basis expansion on a 2-node WBE.

subscript w as a reference to the plane wave boundary
element formulation. The total number of degrees of
freedom is simply given by Nw =

∑J
j=1 Mj .

In the 2-node wave boundary element formulation just
described, one can note that the set of unknown ampli-
tudes Aj at node xj have contribution on the two ad-
jacent wave boundary elements Γj−1 and Γj , thus the
plane waves enrichment can not be done locally on a sin-
gle element. This point has practical consequences when
dealing with irregular meshes and we will comment on
this further.

4 A Benchmark problem

In this section, some results for the scattering of an inci-
dent plane wave φi(x) = exp(iκd · x) propagating along
the horizontal direction d = (1, 0) by a hard circular
cylinder of radius a are presented. In polar co-ordinates,
the field can be represented by separable solutions and
the exact scattered potential φ̃s on the boundary is given
by the infinite series:

φ̃s(x) = −
∞∑

n=0

(1 + δ0,n)i
n J ′n(κa)Hn(κa)

H ′
n(κa)

cos(nθ), (21)

where x = a(cos θ, sin θ) and δ is the usual Kronecker
symbol. Functions Hn and Jn are respectively, Han-
kel and Bessel functions of the first kind and order n,
and primes denotes differentiation with respect to their
arguments. This series is well behaved and allows one
to produce very accurate results without deterioration
at high frequency. By using the Bessel’s first integral
identity [7], the trigonometric term cos(nθ) in (21) ad-
mits a plane wave integral representation which, after
discretization, can be approximated up to any desired
accuracy as a finite plane waves series. This result can
be generalized to any pointwise convergent Fourier series
with respect to the azimuthal angle θ [8]. In this con-
text, the plane wave basis expansions (16) is expected
to produce very accurate results. These can be con-
veniently displayed by plotting the overall L2 error (in
percent)

E2(%) = 100×
‖φ− φ̃‖L2(Γ)

‖φ̃‖L2(Γ)

(22)

against the global discretization level τ defined as

τ =
λNdof

ar(Γ)
, (23)

where λ is the wavelength, Ndof denotes the total num-
ber of degree of freedom and ar(Γ) =

∫
Γ
dγ(x) stands

for the perimeter of Γ. In equation (22), functions φ
and φ̃ denote the computed and exact total wave field
on the surface of the scatterer respectively. The effi-
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Figure 3: Convergence rates for the case of the plane
wave scattering by a rigid cylinder, κa = 100 .

ciency of the plane wave basis is clearly confirmed in
Fig 3 showing a comparison of the convergence rate of
the 2-node plane wave based approximation (16) (re-
ferred to as the Galerkin Wave Boundary Element or
GWBE) using J = 4 wave boundary elements with M
planes waves attached to each node and the standard
p-order Lagrangian interpolation. The evolution of the
GWBE error as τ increases (note that the associated
number of wave directions M is recovered by inverting
(23)) shows superconvergence rates and these results are
comparable with some theoretical predictions (see Fig.2
in [8]). It is now well known that the ‘price’ to pay
for such remarkable accuracy is manifested in matri-
ces with very high condition number. In these severe
scenarios, it was found beneficial to discard very small
singular values likely to be corrupted by round-off er-
rors. In the following examples, all computations are
carried out using such a truncation whenever the condi-
tion number (in the 2-norm) exceeds 1012. In the other
cases, there is no filtering and the matrix system is in-
verted using standard algebraic solvers. In [2], it was
numerically observed that the plane waves approxima-
tion yields better results at high frequency and this is in
agreement with earlier predictions based on geometrical
optics arguments. In practice and for a given geometry,
the question arises as to what ‘high frequency’ means.
To cope with this issue, we found it relevant to consider
the local reduced wave number βj defined as the number
of wavelengths spanned by the WBE Γj:

βj =
hj

λ
, (24)

where hj is the length of Γj . To simplify the analy-
sis, the circular scatterer is first regularly meshed using
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J = 10 WBE. In this case, all the βj ’s are equal to the
same value (let us call it β). The method’s performances
are conveniently highlighted by studying the evolution
of the overall error E2 with respect to the discretization
level τ and the number of oscillations β contained within
a wave boundary element. Through intensive calcula-

β

τ
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14 16 18 20

E2 < 0.001%

Figure 4: Scattering by a rigid circular cylinder
regularly meshed with J = 10 WBE (red color) and
J = 2 WBE (blue color). L2 error isolines, E2 = 1%

(solid line) and E2 = 0.001% (dashed line)

tions, such dependence has been investigated over a fine
grid on the rectangular domain (β, τ) ∈ [0, 20]× [2, 15].
In Fig 4 (are plotted, in red color, the isolines of the
quadratic error. The blue color isolines correspond to
the same study by using only J = 2 WBE. All the-
ses results display a L-curve pattern which character-
izes what we may interpret as the plane wave approx-
imation trade-off. The upper right area above the last
isoline can be identified as the over-discretization region
where very high accuracy can be obtained at the price of
very ill-conditioned matrices. If best results (in terms
of reducing the complexity) are obtained when using
large elements (say β > 5), the associated system ma-
trices are likely to be nearly ill-conditioned and the use
of the SVD solver might be necessary. Ill conditioning
effects can also be met when small elements are over-
discretized. Using curve fitting algorithms, it is possible
to extract an approximation of the E2 isolines. Here,
we propose the following empirical law

τ ≈
C

β0.8
+ 2, (25)

where C is a constant which depends on the expected
level of precision, given in Table 1. The differences be-
tween the cases J = 10 and J = 2 highlight the fact
that the geometric distortion also has an influence on
the precision of the method and straight elements show
better performance than curved ones. The asymptotic
behaviour that τ → 2 when β → ∞ is consistent with
[2, 4] and share some similarities with the well known
sampling theorem. All these developments will be help-
ful in the remainder.

E2 J = 10 J = 2
1% C = 2 C = 4

0.001% C = 8 C = 12

Table 1: Determination of constant C.

5 Numerical examples

This section addresses the major issue on the ability of
the wave based method to handle irregular meshes with
patches of varying sizes. For this purpose the test geom-
etry given in Fig 5 has been considered. It represents a
non-convex scatterer with sharp corners, consisting of a
square of size a exhibiting a small cavity of characteris-
tic length b. The boundary is discretized using 8 WBE

a

b

12

3 4

56

7 8

Figure 5: Square with a cavity.

and the associated nodes are numbered ranging from 1
to 8 as shown. Thus, the mesh comprises three different
element sizes: h1 = a, h2 = a−b and h3 = b. For a given
frequency, the problem naturally arises as to guess the
right number of plane waves at the nodes. To illustrate
the strategy, we consider a cavity of size b = a/10 at
κa = 100. For a given accuracy, the required discretiza-
tion level on each WBE is given by applying the isoline
approximation formula (25) locally as a function of the
number of oscillations spanned by the element Γj , i.e.,
we take

τj =
C

β0.8j

+ 2, (26)

where τj now stands for the local discretization level.
Let us consider, for instance, an expected precision of
about 1%; since the elements have no geometric distor-
tion we shall take C = 2 as suggested in Table 1. We
give in Table 2 the repartition of τj for the first three
wave boundary elements.

j = 1 j = 2 j = 3
hj 1 0.45 0.1
βj 50/π 22.5/π 5/π
τj 2.22 2.41 3.38

Table 2: Local discretization levels at κa = 100, with
b = a/10 for an expected precision of 1% (C = 2).

As mentioned earlier, the 2-node WBE formulation
has the drawback that each set of plane waves contribute
to approximate the wave field on two consecutive ele-
ments. Thus, there is no simple correspondence between
the local discretization level and the number of plane
waves except for regularly meshed geometries. To over-
come this difficulty, we define τj as the average number
of plane waves contributing in approximating the wave
field on the element Γj , this gives

τj =
λ(Mj +Mj+1)

2hj
. (27)

With this definition, it is clear that the homogeneous
case Mj = Mj+1 is recovered. Now, inverting equation
(27) for all j = 1, . . . , J yields the following linear sys-
tem:

QM = L, (28)
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where the vector (L)j = 2βjτj contains the number of
variables required per element and M = 〈M1, . . . , MJ〉T .
The connectivity matrix Q has the property of being
always singular when J is even and detQ = 2 when
the number of elements is odd. Note however that the
invertibility of matrix Q does not guarantee a ‘good’
solution M as it may happen that some of the Mj ’s have
negative values. Thus, system (28) can not be solved
in the usual manner. To alleviate these difficulties, we
introduce the residual vector

R = QM− L, (29)

and we look for a quasi-optimal solution vector MT
opt as

to minimize the fitness function

F (M) = ‖R‖2 + ρ

J∑
j=1

(min(0, Rj))
2, (30)

where Rj = (R)j and the penalty term in the right hand
side is added to ensure that the discretization constraint
(27) is satisfied everywhere along the boundary. As the
function F (M) is likely to contain a large number of local
minima, a global optimization strategy was necessary.
In this work, we have chosen to develop and apply an
evolutionary algorithm [9]. In Fig 6, performances of the
strategy are compared with those obtained using a more
naive approach in which the number of plane wavesM is
taken constant at all nodes. Standard BEM results (p =
2) are also shown in order to give a fair comparion with
conventional discretization techniques. Here, the test
case is an artificial radiating problem for which an exact
analytical solution is available. All calculations except
the BEM ones have been carried out by simply choosing
different values for the constant C in (25). In order
to validate the method on a scattering problem. We
consider the same obstacle with a cavity of size b = a/20,
impinged by a plane wave of incidence θi = π/4 at the
frequency κa = 68. There is no analytical solution for
this problem and the GWBE solution is compared with
a reference solution computed with standard quadratic
BEM on a very refined mesh. Fig. 7 shows the real part
of the total acoustic field in the propagative medium
surrounding the scatterer showing the effect of the cavity
in the scattering pattern.
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