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This paper is devoted to the study of water-saturated porous plate/water layered structures by means of the 
transition terms defined from the reflection and transmission coefficients. Transition terms are obtained from the 
eigenvalues of the scattering matrix of the water-immersed structure and exhibit the symmetric or antisymmetric 
resonances of the structures. The N porous plates associated in our structures obey Biot's theory. The reflection 
and transmission coefficients of a unique water-saturated plate being calculated, an induction on N process 
allows to find the reflection and transmission coefficients of a given N plate/water-layer structure. The plates 
used in the experiments at normal incidence are 5mm thick. The reflection and transmission coefficients of sets 
of 1, 2, 3, and 4 water immersed plates, separated from each other by a 1cm water gap, are measured. There are 
good agreements between the calculated and experimental transition terms. Which obey the Breit-Wigner 
resonant form which characteristics can be obtained.  

Introduction 

The study of the transition terms of water-saturated porous 
plate/water layered structures is way to obtain resonance 
characteristics of the structures. This paper is devoted to the 
study at normal incidence of both theoretical and 
experimental transition terms of sets of periodic water-
saturated porous plates. Up to four identical porous plates 
separated by water layers are investigated experimentally. 
 The constituting material named QF-20 is produced by 
Filtros®, and obeys Biot’s theory. 

Experiment 

The plates (350×200×5 mm) are carefully slid parallel 
into a machined plates holder and stand vertically between 
two transducers in a 2000-litre water tank (see the 
experimental set-up in Fig.1). The distances between the 
transducers and the plates are about 50cm ; the diffraction 
is negligible and a normal incident plane pulse is repeatedly 
launched by the emitter onto the incident face, denoted A, 
in the sets of plates. 

 
Fig.2 experimental set-up 

The transducers are identical (Panametrics® non-focused, 
diameter of the active element: 1,5in., central frequency: 
500 kHz; the frequency range runs approximately from 150 
kHz to 850 kHz. The signals are not amplified, and the data 
are stored after the electronic perturbations have been 
removed thanks to an average of 300 acquisitions. The 
sampling frequency is 100 MHz, and the recorded signals 
have at least 20,000 samples with no reflected signals from 
the walls of the tank. The reflected and the transmitted 
signals from the plates are normalized with the direct 
signal, passing from the emitter to the receiver, recorded 
after the plates have been removed for the same locations of 

the transducers. The zero-padding technique is used to 
obtain experimental reflection and transmission coefficients 
with an effective resolution of the order of 200Hz.  

Theory 

Reflection and transmission coefficients of 
a set of N periodic porous plates 

Let us consider N identical porous plates with thickness d 
separated by water layers with thickness D. The face A of 
the set is always considered as the phase reference plane. 
The reflection and transmission coefficients of the whole 
structure obey at normal incidence to the relation Eq.(1), 
Eq.(2). These coefficients only depend on D and C1 (the 
velocity of sound in water). The reflection and transmission 
coefficients of unique plate denoted 1R  and 1T  respectively. 

NR  and NT  will be calculated thanks to Biot’s theory in the 
following. Proceeding by induction on N 2≥ , the general 
expressions of the reflection and transmission coefficients 
of N layers separated by ( )N 1−  water layers obey the 
formulas: 
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where ω is the angular frequency. The basic principle of 
this method is to consider, first, that 1R  and 1T  contain the 
complete acoustic behavior of a plate. Second, two 
successive plates and their separating water layer can be 
replaced by a unique plate with coefficients 2R  and 2T , and 
located where the first one was. In this way, the heavy 
matrix formalism proposed by Gordon et al. is not 
necessary [1]. 

Reflection and transmission coefficients of 
a porous plate obeying Biot’s theory 

At normal incidence, only two longitudinal waves 
propagate in the porous material [2, 3]. The velocities of the 
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so-called fast and slow waves are the solutions of a 
biquadratic equation presented by Stoll [4]. 1R  and 1T  are 
the solutions of a ( )6 6×  matrix equation obtained from the 
boundary conditions satisfied by the scalar potentials at the 
interfaces of the immersed plate. We follow the procedure 
proposed in [5] to calculate them. The experimental 
conditions are taken into account to give to the parameters 
of the plates the values leading to the weakest discrepancy 
between the theoretical and experimental transmission 
coefficients for the four studied layered structures. The 
viscosity of the tap water we use is stronger than this of 
pure water. 
As the viscosity governs the possibility of the fluid to flow 
more or less easily in the connected pores of the porous 
media, it influences the coefficient of permeability 
introduced in the empirical law of Darcy, used in Biot’s 
theory, in order to state the complex relation between the 
moving fluid and the solid part [2, 3]. As a result, the 
permeability taken here is smaller than that of the 
pioneering papers using QF-20, see in the accompanying 
Table 1 the physical constants of water and QF-20. On the 
whole, the values of the two columns are close. However, it 
must be noticed that the discrepancy between the 
experimental and calculated transmission coefficients is 

reduced when an imaginary part is added to the dried bulk 
modulus. So is established the viscoelasticity of the solid 
part of the plates. 

Transition terms 

The scattering matrix of the structure is a 2x2 matrix [6]. Its 
diagonal elements are equal to the reflection coefficient 

NR , while the off-diagonal elements are equal to the 
transmission coefficient NT . The two eigenvalues of the 
scattering matrix then take the form 

S N NR Tμ = + ,    (3) 

A N NR Tλ = − .     (4) 

The physical meaning of the eigenvalues is contained in the 
transition terms 

S
Tμ  and 

A
Tλ  defined by: 

1 2
S SiTμ μ+ =  ,    (5) 

1 2
A AiTλ λ+ = .     (6) 

 

 
  Values in 

pioneering papers. 
Experimental values 
used in this paper. 

Bulk modulus of grains 
r

K  (Pa) 936.6 10⋅  936.6 10⋅  

Dried frame bulk modulus 
b

K  (Pa) 99.47 10⋅  ( ) 910 0.4 10+ ⋅i  

Dried frame shear modulus μ  (Pa) 97.63 10⋅  ( ) 99 0.5 10+ ⋅i  

Solid density 
s

ρ  (kg m-3) 2760 2760 

Bulk modulus of water 
f

K  (Pa) 92.22 10⋅  92.22 10⋅  

Water density 
f

ρ  (kg m-3) 1000 1000 

Water sound velocity 
f

c  (m s-1) 1478 1478 

Saturating water viscosity η  (kg m-1s-1) 31.14 10−⋅  31.5 10−  

Porosity β 0.402 0.38 
Permeability K  (m2) 111.68 10−⋅  111.5 10−⋅  

Pores radius 
pa  (m) 53.26 10−⋅  53.2 10−⋅  

Tortuosity α  1.89 2.15 
Table 1 Physical constants of water and QF-20 

Results and discussion 

The modules of the transmission coefficients, and those of 
the symmetric and antisymmetric transition terms of the 
systems of 2 and 4 plates separated with a gap between 
plates of 1cmD =  are presented below in the fd range 0.5 
to 4.5 MHz mm. 
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Fig.2 Transmission coefficient of two porous plates 

separated by water layer. Experiment (solid curve) and 
theory (dotted curve). 

 
Fig.3 Symmetric transition term of two porous plates 

separated by water layer. Experiment (solid curve) and 
theory (dotted curve). 

 
Fig.4 Antisymmetric transition term of two porous plates 
separated by water layer. Experiment (solid curve) and 

theory (dotted curve). 

 
Fig.5 Transmission coefficient of four porous plates 

separated by water layers. Experiment (solid curve) and 
theory (dotted curve). 

 
Fig.6 Symmetric transition term of four porous plates 

separated by water layers. Experiment (solid curve) and 
theory (dotted curve). 

 
Fig.7 Antisymmetric transition term of four porous plates 
separated by water layers. Experiment (solid curve) and 

theory (dotted curve). 

 
As the number of plates increases, the stopbands become 
more clearly defined and the number of the resonances 
increases. The agreement is quite good. Since each plot of 

S
Tμ  and 

A
Tλ  is devoted to only one kind of vibration mode 

(symmetrical or antisymmetrical), the resonance peaks are 
less numerous than in the plot of the transmission 
coefficients and therefore easily separated [7]. They obey 
the Breit-Wigner form. A resonance will be located in the 
Argand diagram of a given frequency rang of the transition 
terms by its circular shape; the resonance frequency 0fd  is 
located at the peak of the derivative of the curvilinear 
abscissa. The resonance width Γ  and the value of the 
diameter are simply estimated [8]. This method is 
successively applied for the calculated and the experimental 
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spectra transition terms. For example, some Argand 
diagram are presented in Fig.8 and Fig.9. The 
characteristics of the resonances are given in Table 2. The 
results are rather close for the symmetrical modes. 

 
Fig.8 Argand diagram of 

S
Tμ  experimental of two porous 

plates separated by water layer. Frequency range 1.15-1.45 
MHz mm 

 
Fig.9 Argand diagram of 

S
Tμ  theoretical of two porous 

plates separated by water layer. Frequency range 1.15-1.45 
MHz mm 

Experiment symmetric 
resonances 

Theoretical symmetric 
resonances 

0fd  

(MHz mm) 
Γ  

(MHz mm) 
0fd  

(MHz mm) 
Γ  

(MHz mm) 
0,95 0,09 0,93 0,13 
1,33 0,13 1,32 0,14 
1,82 0,30 1,81 0,31 
2,35 0,12 2,34 0,18 

2,74 0,22 2,74 0,19 
3,19 0,19 3,25 0,20 

3,49 0,17 3,51 0,25 
3,78 0,18 3,80 0,19 

Table 2 Position and width of resonance. Symmetrical case. 

5 Conclusion 

It has been experimentally set in evidence that transition 
terms can be exhibit only one kind of the vibration modes 
of the stacks made with porous plates separated by water 
layers. Their amplitudes are greater than those of the 
transmission coefficients. The resonant behavior of the 
water-saturated porous plate/water layered structures is 
clearly established via the properties of the Argand diagram 
at the vicinity of a resonance. There are good agreements 
with the corresponding calculated transition terms. The 
other outcome of this work is that the acoustic attenuation 
of stack of the plates can be rigorously quantified by 
measuring the amplitudes of the transition rather than those 
amplitudes of the reflection or transmission coefficients.  
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