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The inner ear or cochlea processes the acoustic signals that enter the oval window into a specific time-frequency 

pattern. Many acoustic signal processing methods are based on this behaviour. A fundamental method is to 

calculate this time-frequency response by solving the differential equation of the movement of the basilar 

membrane, followed by a visualisation of the excitation patterns in a time-frequency plot. For that purpose 

Continuity Preserving Signal Processing (CPSP) is a promising method. 

An overview is given of a project that is carried out by TUD (University of Technology Delft) together with 

RUG (University of Groningen) being sponsored by STW (Dutch Technology Foundation). The project divides 

into four sub-projects which are closely related: Automatic Keyword Spotting, Machine Analysis and 

Diagnostics, Speech Intelligibility Enhancement for Hearing Aids, and Quality Assessment of Room Acoustics. 

Results that have been obtained in the project will be summarised. Detailed results of the sub-projects are 

presented in separate papeers of this conference. 

1 Introduction 

In this paper an overview is presented of a project that is 

presently being carried out by Delft University of 

Technology (Acoustical Imaging and Sound Control) 

together with University of Groningen (Artificial 

Intelligence). The origin of the project stems from the fact 

that much overlap in interest has been found on the essence 

of the human hearing which relates back in a great extend 

to the signal processing of the cochlea. The cochlea can be 

seen as the acoustic-neural transducer of humans and other 

natural species. 

Research on the acoustic-mechanical principles of the 

cochlea goes back to the fundamental work of Von Békésy 

[1], [2], [3]. He made anatomical preparations of the human 

cochlea and observed the movements of the basilar 

membrane due to sinusoidal exitation with different 

frequencies, using microscopic techniques. From his work 

it was concluded that the basilar membrane can be seen as a 

distributed second order mechanical system that is activated 

by the vibrations transferred from the ear drum by the 

middle ear ossicles to the oval window of the cochlea. The 

excitation results in a transverse traveling wave along the 

basilar membrane, which resonates at positions along the 

membrane, depending on the frequency content of the 

excitation. This so-called tonotopical behavior forms the 

basis for the way in which the vibations on the basilar 

membrane give rise to neural impulses that are transferred 

to the brain by the auditory nerve and are observed as 

sound. 

Following Von Békésy, the mechanical properties of the 

cochlea have been studied by many researchers. We 

mention here Zwislocki [4], Viergever [5], and Netten and 

Duifhuis [6]. The tonotopical behavior of the inner ear has 

also been used by several researchers to explain the 

psychoacoustic behavior of the human ear. The positions 

and widths of the excitation pattern on the basilar 

membrane are strongly correlated with the critical bands of 

Zwicker et al. [6] that are related to loudness perception. 

The combination of the tonotopical spread of frequencies 

along the basilar membrane, in combination with the 

temporal character of the neural activity, has led to a 

common practice to visualize sounds as time-frequency 

plots of amplitudes. Such representations are generally 

known as spectrograms. They can give a very good insight 

in the time-frequency content of all kinds of sounds, and are 

well suited to characterize sound for different purposes. 

 

It is interesting to compare the time-frequency response of 

the cochlea with different mathematical approaches of time-

frequency analysis, where it is usually searched for the 

minimization of the product of temporal and frequency 

uncertainty, sometimes called the Heisenberg uncertainty of 

signal analysis. See Hut el al. [8]. 

By inspection of sound spectrograms it can be observed that 

in many cases there are harmonic patterns that last for a 

certain amount of time. We see this for instance in music, 

but also in speech and certain kinds of traffic noise. 

Therefore it makes sense to characterise such sounds by 

looking at the temporal development of these areas of 

maximum amplitude response as a function of time and 

frequency. To be able to do so an efficient calculation 

scheme of the time-frequency response of the cochlea is 

needed together with an algorithm to detect and analyse the 

time frequency maxima as so-called ridges. Much effort on 

this topic has been given by Van Hengel [9] and Andringa 

[10]. 

2 Theory 

In this project we use different methods to obtain a time-
frequency representation of audio signals. 

In its most fundamental form, time-frequency analysis 
consists of the application of a set of filters 
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(t)  where 

each filter acts as a narrow band filter on the input 
signal

  
g(t) . 

Such a filter 
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(t) can be characterized by a time and 

frequency center and a time and frequency spread, being 
defined by: 
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in which 
   
!g(! )  is the Fourier transform of 

  
g(t)  and 

 
g  is 

the norm of
  
g(t) , given by 
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or, using Parsevals theorem: 
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where it is noticed that 
  
g(t)  can be a complex function. 

It was derived by Gabor [11] that the following unequality 
holds: 
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For a good time-frequency resolution this product should be 
as small as possible. 

The so-called Gabor filters fulfill the property 
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It was found by Hut et al. [8] that the cochlear response has 
less resolution than the Gabor filters and can therefore not 
replace the Gabor filters for general purpose high resolution 
time-frequency filtering.  

There are many ways of obtaining time-frequency response 
functions of auditory signals. A well known method is the 
short term Fourier method where the signal is divided into 
small overlapping time slices that are Fourier transformed. 
Another often used method is by using so-called 
gammatone filters, as introduced by De Boer [12]. The 
mathematical formulation is given by 
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(t ! 0, n ! 1) , where 

 
f

c
 is the center frequency of the filter 

and n the order of the filter. a, b ! are parameters that 
determine the amplitude, the duration and the phase of the 
filter. Gammatone filters can be implemented in a very 
efficient way. 

To let the time-frequency response of the applied filters 
correspond as good as possible with human perception it is 
preferred to mimic the time-frequency response of the 
basilar membrane. Although the basilar membrane response 
includes a non-linear behaviour, a good approximation is 
obtained by linear modeling. An analytic model can be 
obtained with the following differential equations: 
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In equations (10) and (11) m, d(x,y) and s(x) are mass 
surface density, damping, and stiffness, respectively, while 
x represents distance along the membrane, and y(x,t) is the 
displacement of the membrane. p(x,t) is the pressure in the 
cochlear fluid and " is a constant determined by the density 
of the cochlear fluid, the cross-sectional area of the 
cochlear channels and the width of the partition, which are 
all assumed to be constant and are hence not shown 
explicitly in the model. More details of this model are given 
in Netten en Duifhuis [6] and Diependaal et al. [13]. 

The numerical values of the different parameters in these 
equations have been well established by extensive research 
and the filter set has been implemented in a very efficient 
way by Van Hengel [9] and Andringa [10]. They also 
included so-called ridge detection as an analysis tool for 
continuity preserved signal processing (CPSP). 

Figure 1 shows a comparison between time-frequency 
analysis based on the short term Fourier transform 
(spectrogram) and a numerical simulation of the cochlear 
response (cochleogram) for a small speech segment of 
sound. Notice the difference in spectral resolution and 
continuity of the harmonic components. 

 

a) spectrogram 

 

b) cochleogram 

 

Figure 1: Comparison of the spectrogram and the 
cochleogram of a short example of male speech. 

Depending on the application, a time-frequency analysis 
method can be chosen at will. For some applications there 
is also a synthesis step to return from a time-frequency 
respresentation of the signal back to the time domain. More 
than one audio channel may be involved, for instance 
separate channels respresenting the audio signal at the left 
and right ear, or even a larger set of audio signals from an 
array of microphones. A general processing scheme 
including analysis and synthesis of one audio channel is 
shown in figure 2.  

 

 

Figure 2: Flow chart of cochlear analysis and cochlear 

synthesis of an audio channel. Also indicated is the 

extraction of audio parameters from the cochlear domain 

respresentation of the signal. 

3 Overview of the subprojects 

In this chapter we present a short overview of the different 

subprojects that are involved. A common nomer in all 

subprojects is the time-frequency representation and 

processing of audio. Some subprojects have a separate 
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paper at the Acoustics-08 conference, where more detailed 

information is presented. 

3.1 Automatic Keyword Spotting (AKS) 

In the AKS project we concentrate on the recognition of 

keywords in a wide variety of (degraded) acoustical 

conditions which is an unresolved problem in modern 

automatic speech recognition. We will illustrate our 

approach with a description of recognizing vowels.  

Vowels are a subset of the voiced parts of speech which is 

very robust to noise. The informative parts of voiced speech 

are the harmonic complexes and these can be extracted 

relatively easy from a distorted signal. In order to extract 

the harmonic complexes, the signal components that exhibit 

relatively high energy levels are selected first. And second, 

the selection is reduced to the signal components that can 

be related to harmonic complexes. The harmonic 

complexes are then resolved by adding less reliable parts of 

the signal. 

From ten different males, five vowels were selected from a 

spoken sentence. These vowels were used as an input to 

select the harmonic complexes as described above. Because 

harmonics do not cover all frequencies of the spectrum we 

focus on estimating the information underlying the surface 

structure in order to categorize the vowels. In order to 

approximate the real frequencies of the possible formants 

spectral peaks of the harmonic complex were extrapolated. 

For 12 vowels minimal distances were calculated of the 

estimated formant frequencies to the formant frequencies 

for Dutch vowels as described in the literature [18]. Based 

on these minimal distances the vowels were ordered on 

probability. The vowels that are uttered turn out to be 

categorized in the three-best group of hypothesized vowels 

(figure 3). 

 

Figure 3: Proportion of correctly recognized vowels in the 

one-best, two-best and three-best group. 

Two aspects suppress these results. Firstly all local 

maxima, without making a selection, are used as possible 

formants. An even better formant estimation might be 

obtained if time integration of the formant hypotheses limit 

or expand the formant hypotheses space. A second aspect 

that might suppress the results is the fact that only the 

formant frequencies and no other vowel characteristics are 

used. In the future these two aspects will be added to serve 

the task of vowel recognition in arbitrary acoustical 

environments. 

 

3.2 Machine Analysis and Diagnostics 

(MAD) 

Acoustical signals are a useful source of information about 

the functioning of machines; human operators can often 

detect and diagnose machine failure by simply listening to 

the sound they produce. The goal of the MAD project is to 

investigate the possibilities to approach or even surpass this 

remarkable ability of humans by an automatic system. In 

general, the performances of sound recognition systems are 

limited, amongst others due to unexpected input. However, 

since machines often contain rotating parts producing 

sounds with a highly tonal and relatively simple structure 

(see for instance Figure 4), we expect that the sound of 

specific machines can be modelled accurately. 

We model the sound in terms of signal components (SCs). 

SCs are physically coherent trajectories in the time-

frequency plane with a positive local signal-to-noise ratio. 

The (relative) positions of SCs together with their energetic 

development are supposed to contain all information 

necessary to obtain the machine’s status. However, since 

extracted SCs usually stem from different sound processes, 

this higher-level information can only be revealed after 

grouping. 

In Figure 4 we show such a mixture of sounds, produced by 

the compressor of a gas turbine (Solar Centaur) during 

startup. After 2.6 seconds, a new sound source enters the 

scene (harmonic sweeps). In order to classify this sound, its 

SCs has to be extracted (bottom panel) and grouped 

together to segregate it from its pulse-like background. 

After grouping (result not shown here), the new sound 

source can be analyzed separately to determine whether or 

not it is related to machine failure.  

At this moment we have an effective SC-extraction 

algorithm and a grouping algorithm based on harmonicity. 

Future work should lead to the modeling of (other) machine 

behavior and expected defects and the application of other 

grouping principles. 

 

 

Figure 4: Spectrogram (top panel) shows the relatively 

simple structure of a machine sound. It can be modelled 

effectively by extracting the signal components  (bottom 

panel). 
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3.3 Speech Intelligibility Enhancement of 

Hearing Aids (SEHA) 

For the design of a successful hearing aid, the preservation 

of continuity on a phoneme-scale is of great importance. 

Considering the grade of rehabilitation by a hearing aid, the 

algorithmic reduction of interference has to be performed 

alongside with sustained speech quality and listening 

comfort to enhance speech intelligibility [14]. 

The challenges that hearing aids have to face are real-world 

situations, such as situations in which many talkers compete 

and in which reverberation as well as additive noise 

complicate the intelligibility of a target-speaker. A second 

issue for the design of a hearing-aid algorithm is its 

computational complexity and its real-time performance. 

Although automatic speech recognition systems perform 

more and more successfully, their application is generally 

dependent on a training phase, previous knowledge as well 

as a high degree of computational effort. These systems are 

generally referred to as top-down approaches. In the SEHA-

project we focus on bottom-up approaches, which enable an 

instantaneous speech processing, whereas the 

computational complexity and load are comparatively low.  

CPSP gives a means to adhere to the trade-off between 

noise-reduction and signal-distortion. With respect to the 

preservation of the continuity of speech, SEHA is geared to 

biologically motivated models of speech-processing.  

Research in that field (prominently in the field of research 

named CASA, - computational auditory scene analysis) 

revealed that the gap between the computational 

applications of biologically inspired models and the 

processing of a healthy human hearing is still far from 

bridged. A full understanding of the human auditory 

processing is supposed to be required for an equivalent 

computational operation. However, also combinations of 

different processing schemes of noise reduction appear 

promising to achieve a successful enhancement of speech 

intelligibility [14], [15].  

In the SEHA-project we concentrate on combinations of 

prosperous approaches that enhance speech intelligibility. 

In a first design, we combined optimized spatial beam-

forming [16] with a biological model of modulation 

perception and binaural interaction [14]. The results were 

assessed with the speech intelligibility index. In a variety of 

adverse acoustical situations, the combined processing 

scheme shows an improvement comparable to either of the 

underlying processing schemes alone [17].  

Future work of SEHA is devoted to an optimization of 

complementary processing schemes as well as a further 

incorporation of other successful models of speech 

perception.  

3.4 Quality Assessment of Room 

Acoustics (QARA) 

Acoustical parameters, which describe the acoustical 

qualities of a room, are generally determined from impulse 

responses. These responses can be determined from 

measurements on single positions in the room or from 

measurements along an array with multiple closely spaced 

microphone positions. However, it turns out that these 

parameters as determined from measurements suffer from 

large spatial fluctuations, something which does not match 

with human perception. 

In this project it is tried to reach more reliable results by 

applying mechanisms of the human auditory processing. 

These include the absolute threshold of hearing, overlap of 

the auditory filters and forward and simultaneous masking. 

The resulting signal processing algorithm was tested on an 

impulse response set, measured along a line array in the 

“Concertgebouw” in Amsterdam, the Netherlands. Various 

acoustical parameters were determined from the impulse 

responses before and after applying the algorithm. Results 

for reverberation time, clarity index and early decay time 

are shown in figures 3, 4 and 5. 

 

Figure 3: Reverberation time RT in the 125 – 2000 Hz 

frequency band as a function of offset. The parameter was 

determined both with (red dashed line) and without (solid 

blue line) simulation of auditory processing. 

 

Figure 4: Early decay time EDT in the 125 – 2000 Hz 

frequency band as a function of offset. The parameter was 

determined both with (red dashed line) and without (solid 

blue line) simulation of auditory processing. 

Acoustics 08 Paris

7923



 

 

 

 

Figure 5: Clarity index C80 in the 125 – 2000 Hz frequency 

band as a function of offset. The parameter was determined 

both with (red dashed line) and without (solid blue line) 

simulation of auditory processing. 

It can be seen from the figures that the spatial fluctuations 

reduce considerably when auditory processing is simulated. 

The graphs become much smoother, which is in agreement 

with human perception. 

In the near future the algorithms will be tuned further, to 

make them more robust. Also, the current algorithm does 

not yield much improvement for spatial parameters like 

lateral fraction LF and inter-aural cross-correlation IACC. It 

will be investigated if unwanted spatial fluctuations in these 

parameters can also be reduced. 

 

5 Conclusions and Outlook 

In this paper an overview is presented of work that is 

currently in progress on a project based on time-frequency 

analysis and synthesis of audio signals for different 

applications. The principle of time-frequency analysis is 

used here in relation to the working principle of the human 

ear which is essentially a time-frequency acoustic to neural 

signal transducer. By following the same principles with 

signal processing tools, results can be obtained that are 

close to human perception, which is important for our 

different subprojects. 
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