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The present work is concerned with the vibrations of a discrete multi-coupled periodic system. It lies within a
larger study on the vibroacoustic behaviour of a heat exchanger. These structures are usually made of a
succession of huge number of identical parallel fins (around 600 per meter) connected by tubes conveying the
coolant fluid. By now their behaviour can not be calculated using FE model. As a first step, the periodicity
principles are applied on a simpler structure, i.e. an assembly of identical beams linked by several damped
springs. The basic unit is symmetric and composed of one flexural beam with several springs on each side. Using
the Floquet-Bloch’s theorem and the works of Denys Mead (receptance matrix), it is possible to completely
describe the whole structure behaviour (natural modes, response) only from the vibroacoustic knowledge of the
basic unit. This has been done analytically and the results were confirmed by a (very time consuming) FE model
calculation. The study of the basic unit can also give valuable information on the physical phenomena governing
the transmission from one unit to the next, and then the propagation in the whole structure.

1 Introduction

The present work lies within a larger study, which goal is to
build a model of the vibratory behaviour of a heat
exchanger, more precisely a finned coil. This element is one
of the main parts of air-conditioning systems like liquid
chilling package (chillers) or heat pumps. A finned coil is
made of large number of identical parallel fins connected to
tubes conveying the refrigerant fluid. By now their
behaviour can not be calculated using FE model. The
regular layout of the fins makes the structure periodic, so
this periodicity can be used to simplify the calculation.

The final model of the heat exchanger will consist in a
series of parallel plates (fins) connected by several
couplings (tubes). In order to get a better knowledge of the
phenomena linked with periodicity, the heat exchanger is
first reduced to a bidimensional structure, a periodic
assembly of parallel beams transversely multi-coupled by
springs.

In [1], Mead gave an overview of various methods allowing
the analytical formulation of the vibratory behaviour of
periodic structures. Among those methods, the ones based
on the receptances, on the transfer matrix or using the
space-harmonics hold our attention. Mead also contributed
to develop the receptance approach [2, 3] for single-coupled
periodic structures as well as for multi-coupled periodic
structures. The transfer matrix formulation is used to build
a model of the assembly of beams.

The first part of this paper described the matrix formulation
used to build a model of the vibratory behaviour of the
single element. Then the eigenvalues and vectors of the
transfer matrix are analysed to highlight how the waves
propagate into a periodic assembly of multi-coupled beams.
This also permits to observe phenomena linked to the
natural modes of the single element.

2 Some theoretical developments
about periodic structures

2.1 Matrix formulation

The study of a periodic structure needs first the definition
and characterisation of the single element. The duplication
of this element will lead to the whole structure. Fig. 1
shows a part of a multi-coupled periodic structure and a

diagram of a single element. The subscripts L and R of the
displacements q and the forces F respectively refer to the
left and right sides of the single element.

Fig.1 Block diagrams of a periodic structure and a single
element.

Modelling the single element consists in writing the
relationship between the displacements of the edges and the
corresponding forces. This is done with the receptance

matrix [α]:
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Although the analytical formulation of the problem leads
naturally to the receptance matrix, the transfer matrix is
more convenient to obtain the propagation constants of the
single element. This transfer matrix results from the
reorganisation of the receptance matrix terms:
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It leads to a relationship between one side of the single
element (displacements and forces) and the other, justifying
the concept of transfer.

2.2 Floquet-Bloch's theorem

Wave propagation in periodic structures is based on the use
of the Floquet-Bloch's theorem [4]. For a free wave
travelling through an infinite periodic structure with the

propagation constant μj, the theorem gives the link between
the displacements and the forces at both sides of the single
element:
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The propagation constants μj are obtained from the

eigenvalues λj of the transfer matrix:
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j e= (4)

The Floquet-Bloch's theorem thus gives the vibratory
behaviour of all the coupling points of an infinite periodic
structure from the knowledge of only one of these points.

3 Wave propagation in a periodic
assembly of multi-coupled beams

3.1 Structure description

The periodic structure studied in this paper is composed of
an infinite number of identical parallel beams linked by
three punctual springs of stiffness K. A part of this structure
is showed in Fig. 2. For numerical calculations, the beams

are made of steel (E = 2.1 1011 Pa, ρ = 7800 kg/m3, η =

0.001), with a length of 1 m and a section of 1 × 5 mm².
The springs have a stiffness K = 800 N/m and are situated
at 17, 38 and 59 cm from the top of the beams. The simply
supported boundary conditions allow the use of simple
analytical expressions, which will be convenient for the
future study of coupled plates.

Fig.2 Portion of the infinite periodic assembly.

The whole assembly can be obtained by repeating the single
element of Fig. 3. This single element consists of a simply
supported beam with the equivalent of half-springs on each
side, which makes it symmetric. According to Mead [3],
this symmetry leads to a simpler formulation and an easier
analysis.

Fig.3 Diagram of the single element.

3.2 Transfer matrix formulation of the
single element

Considering the single element of Fig. 3, the calculation of
its receptance matrix is based on the flexural beam
equation. The elastic couplings are introduced in the way of
punctual forces:
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The beam displacement is then projected onto the natural
modes of a simply supported beam:
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Finally, the single element can be modelled by the
following transfer matrix:
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with i, j = 1 to 3, [ ]I  being a 3×3 identity matrix.

3.3 Propagation constants

The eigenvalues of the transfer matrix Eq.(7) lead to the
propagation constants plotted on Fig. 4. Each propagation
constant is associated with a wave travelling in the
structure. These propagation constants being complex, both
real and imaginary parts have to be analysed.

It can be noticed that the propagation constants appear by
pairs, one corresponding to the propagation in the positive
direction (dashed line) and the other one corresponding to
the propagation in the negative direction (continuous line).
Fig. 4 also shows that there are as many pairs of
propagation constants as couplings between single elements
(three for the case under study).
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Fig.4 (a) Real and (b) imaginary parts of the propagation
constants for a beam with three springs on each side.

- -, constant 1; - -, constant 2; - -, constant 3.

Two types of zones can be distinguished: the propagation
zones (pass-bands) and the attenuation zones (stop-bands).
In case of undamped couplings, the propagation zones are

defined by a purely imaginary propagation constant μ = -jβ.
According to the Floquet-Bloch's theorem, crossing a single

element is equivalent to multiply by je− , which means

without change of amplitude (propagating wave
phenomenon) and with a phase difference. On the other
hand, the attenuation zones are defined by a real

propagation constant μ = -α. In that case, the amplitude of

the wave will be multiplied by e−  when travelling through

a single element. The wave is dramatically attenuated and
all the coupling points are vibrating in phase. With regard
to the whole periodic structure, the more a wave will cross
single elements, the more its amplitude will decrease, until
becoming insignificant and having no influence on the rest
of the system (evanescent wave phenomenon).

On Fig. 4, the first propagation constant  shows two
propagation zones, between 12 and 67 Hz and between 188
and 213 Hz. The second propagation constant also has two
propagation zones, between 47 and 103 Hz and between
294 Hz and 297 Hz. The third propagation constant has
only one propagation zone in the frequency domain of
interest, from 106 to 138 Hz.

Note that the natural modes of the whole system will occur
in propagation zones due to the necessity of transmitting the
energy in all the structure.

3.4 Transfer matrix eigenvectors

According to Eq.(2), the eigenvectors are composed of
displacements and forces. They represent the dynamic
behaviour of the coupling points of the single element (that
means the ends of the springs). Each eigenvector
corresponds to a wave travelling into the structure. The
displacements and the forces of these eigenvectors are
respectively called eigendisplacements and eigenforces.

Fig.5 (a) Real and (b) imaginary parts of the first
propagation constant ; (c) displacements and (d) forces of

the first eigenvector.
- -, coupling 1; - -, coupling 2; - -, coupling 3.
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Fig. 5 shows simultaneously the first propagation constant
(i.e. first eigenvalue) and the first eigenvector. The
observations described here are also valid for the other
eigenvectors. As shown by the real and imaginary parts of
the propagation constant (Fig. 5a and 5b), the first
propagation zone is comprised between the lines A and B
(from 12 to 67 Hz). Concerning the eigendisplacements
(Fig. 5c) and the eigenvectors (Fig. 5d), each curve
corresponds to the end of one of the three couplings of the
single element.

On the basis of the receptance matrix terms, Mead [3]
showed that the natural frequencies of a single element with
its ends free and fixed correspond to the bounding
frequencies of the propagation zones. This feature can also
be revealed from the observation of the transfer matrix
eigenvectors. Fig. 5c shows significant eigendisplacements
at the beginning of the propagation zone (line A), which
points out an ability to move without constraint for the ends
of the springs. So this frequency corresponds to a natural
mode of a single element with its ends free, which is
equivalent to a simply supported beam in the present case
(Fig. 6a). On the contrary, the eigendisplacements are equal
to zero at the end of the zone (line B), which is equivalent
to block the ends of the coupling springs. This
configuration being identical to a fixed single element (Fig.
6b), its natural frequencies constitute the upper bounds of
the propagation zones.

The propagation zones can be interpreted as a continuous
variation of the boundary conditions of the single element
between the free (Fig. 6a) and the fixed case (Fig. 6b).

      

(a) (b) (c)

Fig.6 (a) Free single element; (b) Fixed single element;
(c) Beam fixed at the position of the couplings.

The geometry of the single element under study reveals a
third phenomenon concerning the propagation constants. At
some frequencies (line C at 91 Hz), the real part tends to
infinite, which corresponds to the complete wave
attenuation. These frequencies have been identified as the
natural frequencies of a beam blocked at the location of the
couplings (Fig. 6c). With these boundary conditions, the
springs can not transmit any displacement, which is
equivalent to isolate the excited beam from the rest of the
assembly.

4 Conclusion

The principles of the vibratory behaviour of a finned coil
heat exchanger are studied through a simpler structure, an
infinite periodic assembly of beams multi-coupled by
springs. The whole periodic system is obtained from the
repetition of a single element, which has been modelled by
the transfer matrix formulation. The waves propagation into
the structure is then studied through the eigenvalues (i.e.
propagation constants) and vectors of the transfer matrix.
The propagation constants show the propagation and the
attenuation zones while the eigenvectors enable to get a
physical meaning of the coupling points behaviour. Thanks
to this periodic approach, the vibratory behaviour of the
whole assembly of beams can be described only from the
knowledge of the single element.

In this paper, the structure is infinite, allowing to apply
straight the Floquet-Bloch’s theorem to model the waves
propagation into the system. In the next step, a more
realistic finite structure will be studied. Thus the vibratory
behaviour of the structure boundaries will have to be
considered. It will be then necessary to adapt the
formulation which actually relates the displacements of two
coupling points, to take into account the reflected waves.
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