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The low frequency electrodynamic loudspeaker (EDL) unit has been analyzed in terms of chaotic behavior. It 
was found that an electrodynamic loudspeaker can function as a chaotic system. Loudspeaker impedance and 
vibration amplitude as function of driving frequency were measured at various excitation currents, and well-
know cut-off effect from nonlinear dynamical systems has been observed. In the frequency region near cut-off 
frequency and at higher driving currents the period doubling and later chaotic state occur. The experimentally 
obtained chaotic state was confirmed theoretically solving 1-D nonlinear equation of motion with strong 
effective stiffness spatial dependency. It was found that statically measured suspension effective stiffness does 
not enable chaotic state when it is included in differential equation of motion. It has been concluded that 
membrane viscoelastic properties enhance the restoring force far enough to obtain chaos. The nonlinear equation 
describing anharmonic periodically driven oscillator with strong nonlinear effective stiffness has been solved 
numerically and some parameters showing chaotic state have been observed. 

1 Introduction 

Loudspeaker performance and their accuracy in 
reproducing an audio signal without adding distortion are 
significantly lower than that of other audio equipment. For 
example, harmonic distortion in a typical loudspeaker can 
be 100 to 1000 times greater than that of amplifiers. In a 
dynamic loudspeaker, sound is typically reproduced by the 
movement of a current-carrying object in a magnetic field 
due to the Lorentz force. The vibration of membrane causes 
the vibrations of air molecules in front of the loudspeaker 
and sound wave is generated.  
A simplified model of an electrodynamic loudspeaker 
operates as a driven, damped harmonic oscillator. The 
dynamics of the displacement of the membrane x is given 
by the second order time-dependent ordinary differential 
equation (ODE) in the form of eq. 1 [1]. 
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Meff [kg] - EDL effective mass (membrane + suspension 
mass) 
Rm [kg/s] - mechanical losses in the system; internal 
suspension friction, membrane friction and friction coming 
from vibrating air 
keff [N/m2] - effective stiffness of loudspeaker suspension 
and membrane 
B [T] - magnetic field 
l [m] - length of voice coil wire in magnetic field 
I0 [A] - magnitude of excitation current  
ω=2·π·f  [s-1] - radial frequency of excitation current 
The frequency dependence of loudspeaker displacement 
and input electrical impedance near series resonance 
frequency has been measured using measurement system 
shown on fig. 1. 
 

 
Fig.1 Measurement setup 

The very good agreement between theoretical modeling and 
experimental results has been obtained at lower current 
magnitudes (up to 50 mA) [2,3]. The equivalent 
antireciprocal transducer circuit approach (fig. 2) has been 
compared with 1-D linear equation modeling (eq. 1). It has 
been concluded that parameters of model should be 
changed at each current excitation level I0 to obtain good 
agreement between theoretical and experimental results. 
 

 
 

Fig. 2 Electrodynamic loudspeaker modeling as 
antireciprocal transducer 

 
Comparison between experimental results and theoretical 
linear modeling using different approaches are shown on 
figure 3. 
 

 
 

Fig. 3 Comparison between theoretical 1-D modeling and 
experimental results for real and imaginary part of electrical 

impedance at I0= 50 mA 
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Fig. 4 Displacement amplitude (I0=50 mA) 
 
One of the effects observed is a decrease of resonant 
frequency with increasing excitation current as shown in 
figure 5. Linear model cannot give reasonable explanation 
for this effect. 
 

 
Fig. 5. Real part of electrical impedance frequency 

dependency vs. excitation current magnitude 
 
It has been concluded that nonlinear dynamics have to been 
included in modeling of and EDL unit. Effective mass, 
stiffness and intrinsic friction spatial dependecy is 
suggested to use in nonlinear equation. Factor B·l does not 
have strong monlinear spatial dependency and it can be 
neglected up to 5mm displacement amplitudes. 

2 Nonlinear EDL  behaviour 

First suggested model was in the form with effective mass, 
stiffness and intrinsic friction displacement dependency in 
the form of eq. 2 
 
 
Effective mass spatial dependency has form of S-function 
same as friction term Rm. 
The real (Rs) and imaginary (XS) part of radiation 
impedance should also be included in equation of motion 
when EDL is operating in air. The nonlinearity in these 

terms is due to effective radiation surface displacement 
dependency.  
Simplified situation for experimental observation is when 
this terms are zero and EDL unit is operating in vacuum.  In 
that case the real and imaginary part of radiation impedance 
can be neglected.  
At lower excitation amplitudes only part of loudspeaker 
membrane is included in motion. At higher displacement 
amplitude the whole part of membrane is included in 
equation of motion.  The cut-off effect and resonance 
frequency magnitude dependency can be theoretically 
modeled with this 1-D second order nonlinear equation of 
motion with appropriately included all nonlinearities.  
In these experiments stiffness was evaluated in static 
measurements by the use of calibrated loads and 
corresponding evaluation of membrane displacements. It 
was found that effective stiffness is in the form 
keff=m+n·x+p·x2, where coefficients m, n and p have these 
values: m=480 Ν/m, n=−31·103 Ν/m2, p=7.5·106 N/m3, and 
it is notable that k obeys a minimum value at x~2.07 mm.  
A little consideration of Eq. 2 showed that it would be 
exceedingly difficult to explain amplitude bifurcations and 
chaotic state in EDL by this nonlinearity, even if 
coefficients m, n and p are varied in a broad range of values 
being far apart from the commonly accepted values 
indicated by technical performance of the loudspeaker. 
Instead, the only effect evaluated by the use of simulations 
based upon cubic nonlinearity was well known amplitude 
cut-off, continuously observed during the course of this 
work (Figure 6). 

 
Fig. 6 Impedance curve for various excitation currents 
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2.1 Experimental chaotic state 
observation  

 
The experiments included measurements of the loudspeaker 
displacement amplitudes using laser distance meter. The 
fixed excitation frequency (f=43 Hz) is just a little lower 
than frequency where cut-off effect is obtained. Excitation 
current was increased with rate of 20 mA/sec and 
displacement amplitude was recorded. From the recorded 
signal, peak amplitudes were extracted and diagram in 
figure 7 was obtained. 

 
Fig. 7 Peak displacement amplitude vs. excitation current 

 
The vibration amplitude for I0 = 2.0 A is 6.2 mm and is 
nearly constant for higher driving currents, while in the 
current range 0 < I0 < 100 mA vibration amplitude 
increases in the rate 0.052 m/A. It is obvious that amplitude 
is heavily suppressed at high driving currents, and current 
dependent friction Ri is insufficient to explain such a 
suppression, as one might expect.  

3 Theoretical chaos modeling 

The crucial question is how to model this experimental 
loudspeaker behaviour.  
In some instances, experimental findings appeared in the 
course of this work call an attention for the contribution of 
coupled friction-stiffness mechanism.  
This connection between stiffness and friction is 
characteristic property of viscoelastic body incorporated in 
membrane of EDL unit. 
Bennewitz and Rötger [6] (B-R) proposed a rather simple 
model of the viscoelastic body subjected to the forced 
oscillation, and the body was supposed to consist of a large 
number of small viscoelastic regions, each region being the 
source of the hysteretic local surface deformation. 
Deformation of the i-th region is relaxed to the equilibrium 
in time 1/γi , and γi might be interpreted as viscoelastic 
resonance frequencies. The equation of membrane motion 
is superposition of voice coil motion, motions because 
different modes of loudspeaker membrane (Bessels 

function) and because of tilts due to viscoelastic membrane 
properties. 
The equation of motion suggested by B-R theory is rather 
complicated but it can be reduced to the form of eq. 3 when 
mean statistical value of relaxing time is same γi = γ.  
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It can be seen that viscoelastic parameter γ is responsible 
for strong effective stiffness nonlinearity.  
Assuming strong effective stiffness nonlinearity after 
displacement amplitude of 5 mm, the EDL nonlinear 
dynamics behaviour shown in experiments can be explained 
theoretically solving Duffing equation numerically, using 
MATLAB Runge-Kutta ODE solver.  

3.1 Numerically solving nonlinear  1-D 
equation 

A systematic approach to describing loudspeaker vibrating 
system, using the Duffing equation, was provided by 
Woafo [7], where it has been shown that related models of 
electromechanical transducers may exhibit chaos. However, 
Woafo also noted that a linear version is used to describe 
loudspeakers, and that nonlinear terms, which are known to 
cause subharmonics, are often neglected. 
The effective stiffness is assumed in two different forms, 
<with small and strong nonlinearity (figures 8 and 9). 
 

 
 

Fig. 8 Soft effective stiffness nonlinearity assumed in 
theoretical experiments. 

 

 
 

Fig. 9 Hard effective stiffness nonlinearity assumed in 
theoretical experiments 
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The nonlinear equation in the Duffing form, with only 
nonlinear effective stiffness spatial dependency, in the form 
of Equation 4 has been solved numerically using Runge-
Kutta numerical procedure implemented in MATLAB 
function ode23.  
 

2

02 ( ) cos( )eff m eff
d x dxM R k x x B l I t
dt dt

ω⋅ + ⋅ + ⋅ = ⋅ ⋅ ⋅ ⋅  (4) 

 
Effective mass of loudspeaker is assumed constant Meff=16 
g, same as mechanical losses Rm= 0.41 kg/s and factor 
B·l=5.5 Tm was obtained from manufacturer's data. 
The current magnitude is changed in the range of currents 
used in real world experiments (I0=2-3 A). The excitation 
frequency is chosen few Hertz below cut-off frequency 
observed in theoretical simulations (f= 43 Hz). 
The current magnitude is changed with resolution of 0.005 
A. The displacement and velocity steady-state waveforms 
are found for each excitation current magnitude in the time 
interval from 0 to 0.1 s. The waveforms are sampled with 
sampling frequency fS= 2 kHz which is high enough for 
satisfying Nyquist law, even when twentieth von Karman 
harmonic of the current excitation frequency (20·f= 860Hz) 
appears in the displacement signal due to effective stiffness 
nonlinearity. 
The displacement magnitude in steady state for each 
excitation current magnitude is recorded in the time point 
when excitation current has maximum value (cos(ω·t) at 
maximum). This enables plotting the so called brute-force 
diagram, displacement magnitude in the moment t, when 
excitation current has maximum versus current magnitude. 
The initial conditions for new current magnitude 
simulations are chosen from the last integration point of 
previous simulation parameter I0.  
The obtained results are sensitive on initial conditions, 
duration of simulations for each current magnitude and 
loudspeaker parameters. The results are shown for soft and 
hard effective stiffness nonlinearity. 
Poincaré map of considered system has been plotted 
recording displacement and velocity magnitude at 
excitation current in brute force diagram when chaotic state 
appear in simulations. 
The periodic forcing on the right-hand side of the Duffing 
equation causes the problem that the system’s state (x, 
dx/dt, t) explicitly contains the variable t, which is non-
periodic and unbounded. This makes it difficult to define an 
event function for a Poincaré section. 
A typical solution to this problem is to extend the 
periodically forced equation by a system that has sin(ω·t)  
and cos(ω·t) as its solution and to replace the forcing term 
with the correct solution components (eq. 5 and 6).  

)( 22 vuuvuu +⋅−⋅+= ω&    (5) 

)( 22 vuvvuv +⋅−+⋅−= ω&    (6) 

The sub-system in u and v has the solution u(t)=sin(ω·t) 
and v(t)=cos(ω·t). This is now an autonomous system and 
it’s state (x, xϕ, xϕϕ, u, v) has only variables periodic in 
time. It is now easy to specify an event function that 
becomes zero if excitation current signal has maximum. 
The simulation results for assumed soft effective stiffness 
nonlinearity are shown on figure 10. 

 
Fig. 10 Displacement and velocity amplitude with soft 

nonlinearity included in the system 
 
When soft nonlinearity is present in the system only von 
Karman harmonics can be obtained in displacement for 
current magnitude used in real world experiments.  
The results of theoretical experiments for hard stiffness 
nonlinearity are shown in the following figures. The brute 
force diagram is shown on figure 11 in the range of current 
magnitudes from 2.5 A to 3A.  

 
Fig. 11 Brute force diagram for hard nonlinearity effective 

stiffness simulations 
 
It can be seen that chaotic behaviour appears in 
theoretically modeled system at current magnitude I0= 2.7 
A.   
 

 
Fig. 12 The velocity and displacement phase plot vs. 

current magnitude 
 
When model exhibits chaotic behaviour the large number of 
orbits can be seen on figure 12. 
The displacement and velocity waveforms and excitation 
current help functions u(t) and v(t)  are shown on figure 13..  
The displacement and velocity magnitude for brute force 
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diagram and Poincaré map is recorded at time when current 
function has maximum. 

 
Fig. 13 Displacement and velocity waveforms obtained 

with numerical simulations in chaotic state. 
 

The Poincare map recorded when current magnitude is 2.7 
A and excitation frequency f= 43 Hz is shown on figure 14. 
 

 
Fig. 14 Poincare map obtained in theoretical simulations 

4 Conclusion 

An experimental evidence and brief theoretical explanation 
of the chaotic state in an electrodynamic loudspeaker have 
been presented. The new model of viscoelastic coupling 
between membrane stiffness and losses is proposed for 
theoretically explanation of observed phenomena. Chaotic 
state cannot be explained with effective stiffness 
nonlinearity measured with classical methods. The coupling 
of intrinsic membrane friction to the elastic stiffness has 
been verified by analysis of Bennewitz-Rötger equation 
dealing with vibration of a viscoelastic body. The further 
steps will be analysis of membrane displacement amplitude 
waveforms with appropriate time series analysis. 
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