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Aix-en-Provence, France

fmo@ixsea.com

Acoustics 08 Paris

1085



The synthetic aperture imaging is a very promising solution in the well-known compromise between contrast and 
frame rate. Indeed this method leads to the measurement of each transmitter/receiver impulse response of the 
system. From this fact, synthetic aperture imaging reach the transmit/receive focus imaging quality for the cost 
in frame rate of the number of antenna’s elements.  
The main inconvenient of this method is the very low signal to noise ratio provided. Indeed, using only one 
transmitter per sequence leads to a very poor penetration. To correct this, a method using spatial Hadamard 
sequences has been introduced. For each of this Hadamard sequence, a Hadamard beam is generated in the 
medium.  
By a temporal approach, some interesting properties of those beams are highlighted and a method using those 
properties is proposed. Some experiments have been done using those properties and the results show an 
important improvement of the frame rate for a very small cost in contrast.  
 

1 Introduction 

In classical ultrasound imaging, images are reconstructed 
along lines where transmitted beams are focalized at a 
specific depth. Image quality is optimal in a limited area 
given by the depth of field. Outside this area, contrast and 
resolution of images are significantly degraded. 
A way to reduce these effects is to choose several focal 
lengths and partially reconstruct the image after each set of 
transmissions. This method, known as “multifocus 
imaging”, improves the contrast but reduces the frame rate 
of the system by a factor equal to the number of selected 
focusing depths. 
These considerations illustrate the well-known opposition 
between contrast and frame rate in active imaging (medical 
ultrasound, sonar, radar). 
  
One very promising method used to achieve optimal 
homogenous image quality with a reasonable number of 
medium soundings is the synthetic transmit aperture (STA) 
[1],[2], which comprises the measurement of spatial 
impulse responses of the medium for every 
transmitter/receiver pair. In practice, one transmitter is 
excited at each firing, and the reflected signals are recorded 
on all receivers of the antenna. Each set of data is then 
classically delay-and-sum beamformed, providing a low 
resolution image for each transmit. Coherent summation of 
the set of low resolution images leads to the final high 
resolution image [3].  
Another formalism, derived from a seismology approach 
[4], is to define a transmission matrix, with each column 
corresponding to the weighting vector applied at each 
firing. In this condition, the STA method corresponds to the 
identity transmission matrix. Following this track, we will 
call the set of data received from such a transmission the 
full data set (FDS) and the reception process applied in this 
condition, canonical beamforming. 
  
In the first part of this article, we will compare canonical 
beamforming and focalized transmission /reception in terms 
of image quality and penetration. Then, from STA, we will 
derive orthogonal beamforming, which comprises sounding 
the medium using an invertible transmission matrix and 
reconstructing the image from the FDS. We will see that 
this method provides a noticeable improvement over 
canonical beamforming. 
In the second part of this article, we will study the 
particular case of using the Hadamard matrix in 

transmission. Some experimental results are provided. 
Finally, we will study the physics of the sounding beam in a 
Hadamard synthesis using a temporal approach. Some 
interesting properties are highlighted, and lead to a 
significant gain in terms of necessary number of firings, 
allowing to pay contrast against frame rate. 

2 Orthogonal Beamforming 

2.1 Focalized Transmission/Reception 
Case 

Let’s suppose that ),( txe i  is the excitation applied to the 

transmitter placed at ix . The signal received by the 

receiver placed at jx  in the case of a focal point at x  is: 
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where N is the number of elements in the antenna and h is 
the impulse response of the medium integrated on the 
ellipse of focus ji xx ,  and of major axis ( )),( xxtc ieτ− . c 
is the sound velocity in the medium and 
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If X is a point of this ellipse and if )(Xh is its impulse 
response, then: 
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Finally, thb is the thermal noise generated by the sensor. 

In this case, the intensity of the pixel reconstructed at the 
point x , using classical delay-and-sum, is: 
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2.2 Canonical Beamforming Case 

In this case, the received signal in jx for the ith firing is: 

 ),(),,(),(),( txbtxxhtxetxs j
i
thjiij

c
i +⊗=  (4) 

The pixel intensity obtained for the low resolution image is 
therefore: 
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After a coherent sum of the low-resolution images, one 
obtains the high resolution pixel: 
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2.3 Comparison of Methods 

It is easy to see that, for low-depth images, where the 
thermal noise can be neglected, and for a static scene, the 
pixel intensities are the same. Under these conditions, for 
the same image quality, focalized transmission / reception 
requires as many firings as the number of pixels, whereas 
canonical beamforming requires only as many firings as the 
number of elements in the antenna.  
For the focalized transmission / reception method, the 
sensor noise level is:   
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while for canonical beamforming, it is: 
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Thermal noise involves microscopic phenomena 
uncorrelated from one sensor to another. This noise is 
equidistributed on the antenna. If we assume this spatially 
white noise to be stationary, the standard deviations are 
such that: 

 σσ fc BB
N=   (9) 

To conclude with canonical beamforming, beyond its 
possible contribution to the contrast / frame rate opposition, 
this method presents two main disadvantages: a poor 
signal-to-noise ratio and a number of necessary firings that 
is still too large for some applications. 

2.4 Orthogonal Beamforming 

Let’s suppose now that we use for transmitting the 
NN × transmission matrix { } NiiHH ..1== , with iH  

being the weighting vector applied during the ith firing:  
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One can see after the N acquisitions the way to build the 
FDS from the previous set: 
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where T stands for “transpose” and K is a constant called the 
basis gain: 

 HK =  (12) 

It happens that the gain in signal-to-noise ratio is 
K higher for orthogonal beamforming than for canonical 

beamforming [5]. 
This method provides a way to correct the poor signal-to-
noise ratio of canonical beamforming but also gives us a 
great degree of freedom in terms of transmission pattern: 
orthogonal array, orthogonal non-diffracting beam family, 
ad hoc weighting function, Hadamard matrix…. 

3 Hadamard Synthesis 

In the orthogonal beamforming context, one particularly 
interesting transmission matrix is the Hadamard matrix. 
The composite transmitted signals are built from a basic 
pattern and its reverse (multiplied by -1). It is easy to invert 
(orthogonal matrix), and it provides a basis gain of N. 
The Hadamard matrix is built recursively from the ”seed”  
2x2 matrix:  
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And if HN is a NN ×  Hadamard matrix, then: 
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Figure 1 shows two images acquired in the same 
conditions, applying canonical beamforming (left) and 
Hadamard beamforming (right). We can see that, at this 
poor penetration the image qualities are quite equivalent.  

 
Fig.1: Comparison between canonical synthesis (left) and 

Hadamard synthesis (right) for a small depth. 
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Figure 2 shows two images acquired at a greater depth. We 
can see that, for sufficient depth, the canonical image 
reaches the thermal noise while the Hadamard image still 
offers a good contrast. Figure 3 shows a cut along the depth 
of the two images. We can see in this figure the difference 
of level between the two backgrounds, which is around 
20dB. The probe used contains 128 elements, which 
confirm the basis gain approach, foreseeing a signal-to-
noise ratio improvement of: 

dBSNRI 21)128(10log.10 == . 

 
Fig.2: Canonical (left) and Hadamard synthesis (right) for a 

large  depth. 

 
Fig.3: Cut at x=27mm of Figure 3 for a large depth. 

4 Temporal Approach and 
Properties 

4.1 “Point-to-point” Huygens Principle 

 
 
 
 
 
 

Fig.4: Linear antenna geometry. 
Let’s consider a radiated field from a linear antenna in far-
field approximation using the geometry in Figure 4. The 
field amplitude at point P is given by: 
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where W is a weighting law depending on the y1 position 
and k is the wave number. If W is uniformly unitary, we can 
divide the antenna into two sub-antennae: 
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and by variable change: 
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and finally: 
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So the zeroes of the field positions are given by the 
condition: 

 
L

p
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2
λ=   where p is odd.  (19) 

This is a very classical result, but we can take a slightly 
different approach that consists in considering the fact that 
if the path difference between points A and O is half the 
wavelength, there will always be an elementary transmitter 
on the upper half-antenna to interfere destructively with one 
on the lower half antenna. 
Thus zeroes of the field positions can easily be obtained 
considering the difference of path between the antenna 
extremity and the observation point. 

4.2 Rank of a Hadamard Sequence 

Applying a Hadamard weighting consists of dividing the 
total antenna in DN2 sub-antennae excited in opposition, 
where ND is the Hadamard sequence rank. 
With the Figure 4 geometry, a Hadamard sequence of rank 

ND presents sub-antennae of size 
12 −DN

L . 

4.3 Hadamard Sequences of Rank 1 and 2 

For ND=1, W is positive in the upper antenna and negative 
in the lower part. We can apply the “point-to-point” 
Huygens principle at each sub-antenna with a difference of 
path equal to the wavelength. The zeroes of the field 
positions are now situated at: 
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For ND=2, the integral calculation gives us: 
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By variable change: 
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The conditions of zeroes are now: 

L
p

x
y λ2= , with p being an integer. We can note that a 

zero for a sequence of rank 1 is also a zero for a sequence 
of rank 2. 
Here again, we can apply the “point-to-point” Huygens 
principle with a geometrical approach shown in Figure 5. 
One can easily see that the path differences are: 

x
yL

20 =δ  ; 
x
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And so, destructive interference conditions are: 

λδ p=0  and λδδ p=− 12   

Or: 012 δδδ =− . 

We finally find the previous condition: 

L
p

x
y λ2=  (23) 

 
 
 
 

 
 
 

Figure 5: Rank 2 Hadamard sequence geometry. 

4.4 Hadamard Sequence of Rank N 

For an antenna divided in 2N sub-antennae in two-by-two 
oppositionX, the radiated field becomes: 

 ∑ ∫
−

−=

−+

−

−=
1 2

2
1

1
1

)1(),(
N

Nn

L

L

x
yy

jkn
jkr

N

Nn

Nn

dye
r

eyxA  (24) 

Applying the “point-to-point” Huygens principal in this 
configuration, we find the zero condition of the field in the 
general case: 
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In other words, for a given depth, the alternance between 
wavefront maxima and minima is angularly doubled for 
each increment of the rank of the Hadamard sequence. 
Figure 6 represents a field radiated from an antenna of 128 
elements for a Hadamard sequence of ranks 2, 3, 4, and 5. 

 
Figure 6: Radiated field for ranks 2,3, 4, and 5. Frequency 

is 5MHz; 128 elements; pitch is 0.3mm. 

4.5 Natural Multiview 

In this section, we propose to study the relationship 
between fields generated for rank N and N+1. 
From (24), we have: 
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By variable change and development it becomes: 
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Considering the far-field approximation, we obtain the final 
expression: 
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In other words, in the Fraunhoffer area, everything happens 
as if the antenna was two times nearer. 
Figure 7 represents cuts from Figure 6 fields at different 
depths. It shows evidence that the second term induces 
multi-scale similarity under the paraxial approximation. 

 
Fig.7: Transmission pattern for sequence ranks 2, 3, 4, and 

5 at depths of  125, 250, 500 and 1000mm. 
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4.6 Fresnel Zeroes Positions 

Applying the ”point-to-point” Huygens method for point of 
interest situated along the axis of sub-antenna, it yields the 
following condition for the furthest Fresnel zero before the 
spherical decrease: 
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For a sequence of rank N, the position of each Fresnel zero 
along the axis of each sub-antenna is given by: 
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Consequently, the density of energy radiated in the paraxial 
area will decrease very quickly for high-rank Hadamard 
sequences. 

4.7 Lightened Hadamard Synthesis 

Taking into account these previous results and benefiting 
from this spatial localization of the information at different 
sequences, one way to increase the frame rate without 
reducing the contrast could be to refrrain from firing the 
high-rank Hadamard sequences. 
Experimental results in Figure 8 show three images 
obtained by a Hadamard synthesis. The top one uses all the 
Hadamard sequences (128 firings), the center one uses 32 
sequences, and the bottom one only uses 16 sequences. 
We can see that clutter in the anechoic area is quite similar. 
We can see that effect of suppressing high-rank Hadamard 
sequence affects primarily the image in the area closest 
from the array. 

 

 
Figure 8: Upper part: Full Hadamard synthesis. Middle 
part: 32 sequences Hadamard synthesis Bottom part: 16 

sequences Hadamard synthesis. 

5 Conclusion 

Coherently combining a sequence of transmissions, not 
necessarily reduced to a single transmit element at a time, 
allows us to explore new ways of imaging. This paper has 
dealt primarily with dynamic focusing at emission, and has 
shown that the Hadamard “basis” allows us to solve the 
energy problem and offers a methodology to keep the frame 
rate under control. 
The transmission matrix is a promising tool to formalize 
“generalized” STA, aiming at new applications such as 
“adaptive transmission”; we foresee that it will play a part 
in  the future for emission, similar to the “spatial filter” in 
reception.  
The formalism will, however, have to be extended to non-
scalar applications (coherent mixture) as well as to MIMO 
applications (non-coherent mixture). 
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