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The method for measurement of a derived acoustic power of an ultrasound surgical knife has been suggested in 
the free acoustic field conditions. The pressure field of the transmitter, immersed in depth of quater wavelength 
and vibrating at the fundamental frequency (≈25 kHz), has been measured with calibrated hydrophone system at 
different electrical excitation levels. In the linear regime, the transmitter has been theoretically described as an 
acoustic dipole. The radiated acoustic power, displacement and velocity magnitude  at excitation frequency has 
been found, and good agreement between theoretical and experimental results is obtained. When transmitter is 
excited with higher electrical power levels, the nonlinear behaviour in loading medium appears, with strong 
cavitation activity. In the averaged power spectrum of the recorded acoustic pressure signal is evident the 
presence of  harmonics (n·f), subharmonics (f/q), ultraharmonics (n·f/q) of excitation frequency, and also the 
presence of cavitation noise with continouus frequency components even up to twentieth harmonic of 
fundamental frequency. The spatial pressure distribution of each discrete frequency component in the free 
acoustic field has been measured and its contribution to total acoustic power has been calculated.  

1 Introduction 

In this work measurement of derived acoustic power has 
been considered using calibrated hydrophone measurement 
system. The transmitter with sonotrode tip has been 
immersed at quarter wavelength (d= λ/4) on the working 
frequency (f0=24670 Hz) in the anechoic pool at Brodarski 
Institute (Fig 1.). The spatial distribution of pressure 
magnitude has been measured at different  frequency 
components in z and y direction. In the linear regime of 
working only excitation frequency component appears in 
the pressure waveform signal[1]. In the nonlinear regime 
in front of sonotrode tip, dominant nonlinear effect is 
cavitation.  Subharmonics, harmonics and ultraharmonics 
appear in the recorded waveform signal in front of the 
sonotrode tip.  

 
Fig. 1. Ultrasound point source in the free acoustic field 

 
The signal processing techniques have been used to obtain 
pressure magnitudes in the acoustic field points at each 
frequency component of interest. In the linear regime of 
working only excitation frequency is present in the signal of 
dynamical acoustic pressure.  
At higher excitation levels, nonlinear effects in loading 
medium appear: acoustic streaming, finite amplitude effects 
and cavitation[2-4].The dominant effect is cavitation due 
to nonlinear oscillations of air bubbles in the fluid. The 
discrete frequency components (subharmonics, harmonics 
and ultraharmonics) appear in the power spectrum of 
dynamic acoustic  pressure[5].   

In the linear regime of working the non-ideal source 
(sonotrode tip) has been modelled as radially and 
transversally oscillating sphere[6]. The parameters of ideal 
source (source velocity and displacement magnitude) are 
found using acoustic reciprocity theory, assuming point 
source near pressure relase boundary (water-air boundary) 
[7]. In the nonlinear regime the discrete and continouus 
frequency components appear and it has been seen  that 
average magnitude of pressure at each discrete frequency 
component of interest has spatial distribution in the form of 
C/r.  

2 Linear modeling 

In this part of work the models of radially and transversally 
oscillating spheres have been analyzed in linear acoustic 
approximation[8].  

2.1 Radially oscillating sphere 

Assuming that sonotrode tip is a point source of ultrasound 
with dimensions much smaller than wavelength (λ= 6cm) in 
the medium at fundamental excitation frequency (f0= 24670 
Hz).  

 
Fig. 2. Radially oscillating sphere near pressure release 

boundary 
 
The direct pressure field from real source (with radius a) 
can be written in the form of eq. 1. 
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+r [m]- distance from real sourc to field point 

d [m]- immersion depth 

0Q̂ [m3/s]- volume source strength 

ρ0 [m3/s]- densitiy of loading medium (water) 
c0 [m/s]- ultrasound velocity in water  
k [m-1]- wavenumber in water 
a [m]- radius of theoretical radially oscillating sphere 
 
Pressure from image of the source pr is given in the form of 
eq. 2. 
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The total pressure in the acoustic field point is given in the 
form of eq. 3. 
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R(θ)- coefficient of reflection given in the form of eq. 4. 
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Z2 [kg/m2s]- characteristic acoustic impedance of medium 2 
Z1 [kg/m2s]- characteristic acoustic impedance of medium 1 
 
The pressure magnitude is measured in the free field in z- 
direction and connection velocity potential functions of two 
sources have been used to find pressure field on axis z. 
The velocity potential ψ(t) is given in the form of equation 
4, when volume strength source magnitude (Q0) is 
unknown. 
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Using connection between pressure and velocity potential 
in form  of eq. 5 the pressure is found. 
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The pressure assuming far field approximation and only 
difference in phase between real source and its image is 
given with eq.  6. 
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f [Hz]- working frequency 
P(z) [Pa]- pressure magnitude 
C [Pa] - approximation parameter 
When immersion depth d= λ/4 than value sin(k·d)=1. 
Approximating the pressure magnitude spatial dependency  
P(z) using eq. 6, the volume strength of the source and 
other parameters of the equivalent source can be easily 
found at different transmitter excitation levels. The results 
of fitting are shown on fig. 3.  

 
Fig. 3. Fitting measured pressure magnitude spatial 

distribution  with theoretical curve 
Applied RMS electrical power in considered case is  
PEL=0.62 W. The approximation parameter measured in this 
case  C= 500.2 Pa·m.  Volume strength  magnitude 
calculated  from C is Q0=2.033·10-5 m3/s. The derived 
acoustic power (Pd) is calculated using eq. 7 and it has 
value Pd= 0.263 W. The electroacoustic efficiency factor 
(ηea) is calculated as ratio of derived and applied acoustic 
power  and  it is  ηea= 40 %. 
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Knowing source volume strength magnitude, the velocity 
and displacement magnitudes of radially oscillatng sphere 
can be calculated using equations 8 and 9. 
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In the linear regime of working the connection between 
velocity anf displacement is given using eq. 9. 
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Magnitude of velocity on the radially oscillating surface 
U0= 0.67 m/s and displacement magnitude on the source is  
ξ0= 1.67 μm.  
The pressure field calculated assuming radially oscillating 
sphere near pressure release boundary is shown on fig. 4. 

 
Fig. 4. Pressure field magnitude of radially oscillating 

sphere near pressure release boundary 
The velocity potential function on z-axis is shown on fig. 5. 
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Fig. 5. Velocity potential of radially oscillating sphere near 

pressure release boundary 
It can be seen on fig. 5 that gradient of velocity potential 
( ψ∇=ur ) near pressure release boundary is high. That 
means that velocity (u) is dominant to the pressure (p≈ 0). 

2.2 Transversally oscillating sphere 

The next theoretical model considered is transversally 
oscillating sphere. The pressure magnitude spatial 
distribution approximation parameter C is same as in 
radially oscillating sphere model, but velocity and 
displacement magnitude of sources aren't same due to 
different equations describing model. 

 
Fig 6. The tip of sonotrode as transversally oscillating 

sphere 
 
The pressure field of isolated transversally oscillating 
sphere can be written in the form of eq. 8. 
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It can be ssen that pressure field depends on angle θ and 
source parameter A. The parameter A is given in the form 
of eq. 9. 
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The total pressure field assuming superposition of direct 
and reflected waves (from pressure release boundary) is 
given with eq. 10.   
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In the far field approximation the expression isn't so 
complicated and it is given with expression 11. 
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In the z- direction θ= 0° and the expression for pressure 
magnitude can be fitted with C/z function. 
Velocity magnitude U0= 2 m/s and displacement magnitude  
ξ0= 13 μm. These values are higher than in the case of 
radially oscillating sphere as consequence of vibrating body 
only in z- direction.  
The theoretical pressure magnitude spatial distribution in y 
direction of radially and transversally oscillating sphere is 
compared with experimental on fig 7. 
 

 
 

Fig. 7. Presure magnitude spatial distribution on axis y at 
r=0 cm 

The results of comparison at distance r=10 cm  from 
sonotrode tip are shown on fig. 8. 
 

 
Fig. 8. Presure magnitude spatial distribution on axis y at 

z=11.5  cm 
 
From results on figures 7 and 8 it can be seen that better 
model is radially oscillating sphere due to geometry of 
sonotrode tip (half of the sphere).. 
 The results for equivalent theoretical models in the form of 
radially oscillating sphere for different excitation levels are 
shown in table 1. 
 

PEL[W] U0[m/s] ξ0[μm] Pd[W] ηea[%] 

0.65 0.26 1.67 0.26 40.0 
1.37 0.39 2.51 0.59 43.5 

  
Table 1. Parameters of radially oscillating sphere calculated 

for the US source working in the linear regime 
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It can be seen from table 1. that electroacoustic efficiency 
factor is 40%. It will be very interesting to see how this 
factor can be calculated in the nonlinear regime of 
transmitter working when stable and transient cavitation are 
present in the operating medium. 

3 Nonlinear regime of working 

The linear model has been  suggested  in the nonlinear 
regime of working assuming that all nonlinear sources 
(oscillating bubbles) are in the vicinity of sonotrode tip. 
The parameters of medium are unchanged in the far field. 
The pressure waveforms have been recorded in the fields on 
z-axis at different electrical excitation levels. The pressure 
waveform is recorded at r= 1cm  at two different levels of 
excitation are shown on fig. 9. 

 
Figure 9. Pressure waveforms recorded in the acoustic field 

at two different levels of excitation (left-linear, right-
nonlinear) 

The modern processing technique (welch method) is used to 
calculate power signal density. The results for two different 
levels of excitation are shown on fig. 10. 

 
Fig. 10. Power spectrum densities of recorded pressure 

waveforms at different excitation levels 
 

It is evident difference between pressure magnitudes of 
frequency components in the signal. The power spectrum 
magnitude is transformed to pressure magnitude at each 
frequency component. The same calculation, as suggested 
in linear model, is applied for each discrete frequency 
component of interest. 
The total pressure magnitude is suggested as sum of each 
individual frequency component in the form of eq. 12. 
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(12) 
n- number of frequency components in discrete spectrum 
representation 
 
Knowing pressure magnitude at each frequency component 
of interest (P(ωi)) and assuming that parameters of medium 
aren't changed in the far field due to cavitation, the volume 
strength of the sources on each discrete frequency 
component of interest is given in the form of equation 13. 
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The derived acoustic power on each  can be calculated 
knowing volume strength of source in the form of eq. 14. 
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The applied procedure for calculating derived acoustic 
power on each frequency component is shown on fig. 11. 

 
Fig. 11. Derived acoustic power on each frequency 

component of interest in the nonlinear regime 
 
The radiated acoustic power on excitation frequency is 
dominant and it is several magnitudes higher than power on 
other frequency components. The results for calculated 
derived acoustic power on some discrete frequency 
components are shown in the table 2.  

 
Fig. 12. Pressure magnitude spatial distribution at each 

frequency component of interest 
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Figure 13. Pressure magnitude distribution of subharmonics 

 
Figure 14. Pressure magnitude spatial distribution for 

harmonics 
 
The fitting pressure magnitude spatial distribution with 
theoretical curve in the form of C/z for considered applied 
electrical power is shown on figure 15. 

 
 

Fig. 15. Pressure magnitude spatial distribution  and 
comparison with theoretical results (f0) 

 
It can be seen that spatial distribution of magnitudes can be 
very well fitted with theoretical law, and parameters of 
equivalent radially oscillating sources on each discrete 
frequency components can be found. 
The results of theoretical fitting for fundamental frequency 
are shown in table 2. 
 

PEL[W] U0[m/s] ξ0[μm] Pd[W] ηea[%] 

1.89 0.34 2.18 0.451 23.86 
 

Table 2. Fitting parameters of theoretical source on f0 
 

 

 
Fig. 16. Pressure magnitude spatial distribution  and 

comparison with theoretical results (f1/2) 
 
In the table 3 the fitting  results are shown for f1/2. 
 

PEL[W] U01/2[m/s] ξ01/2[μm] Pd1/2[mW] 
1.89 0.073 0.94 5.2 

 
Table 3. Fitting parameters on subharmonic frequency 

 
The majority of acoustic power is on fundamental 
frequency (f0)..  

4 Conclusion 

It can be seen that in nonlinear egime of working the 
electroacoustic efficiency factor is decreased from 40 % to 
23 % and in next steps the more applied electrical power 
levels will be considered. In future work the same 
procedure will be repeated for different types of sonotrode 
tips and more applied electrical powers values  

References  

[1]   Acoustical characterization of ultrasonic surgical 
device.IEEE Ultrasonic symposium, 1995. 

[2]  Beyer RT. Nonlinear Acoustics. American Journal of 
Physics 1973; 41(9):1060-1067. 

[3]  Hamilton M.F., Blackstock D.T.: On the Coefficient 
of Nonlinearity-B in Nonlinear Acoustics,JASA 
1988; 83(1):74-77. 

[4]  Hamilton M.F., Blackstock D.T.: Nonlinear 
acoustics. American Institute of Physics, 1997. 

[5]  Lauterborn W. Numerical Investigation of Nonlinear 
Oscillations of Gas-Bubbles in Liquids. JASA 1976; 
59(2):283-293. 

[6]  Pierce A.D. Acoustics, An Introduction To Its 
Physical Principles And Applications, American 
Institute of Physics, 1994. 

[7]  Kinsler L.E, Frey A.F, Coppens A.B., Sanders J.V. 
Fundamentals of acoustics. John Wiley and Sons, 
INC, 2000. 

[8]  Akay A, Hodgson TH. Sound Radiation from An 
Accelerating Sphere. Journal of the Acoustical 
Society of America 1976; 59:S88. 

 
 

Acoustics 08 Paris

6170


