
Use of the transmission line matrix method for the
sound propagation modelling in urban area
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Many works have been carried out concerning temporal methods since a few years due partly
to the computer revolution that opens major possibilities of solving intricate problems. This
methods are notably well suitable to model phenomena occurring in complex areas, especially
in urban spaces. Indeed, the long range sound propagation in urban areas imposes to take
into account atmospheric attenuation and anisotropic sound speed gradients due to vertical
temperature gradients and wind, as well as diffraction, reflections and diffusion on the frontages.
The combination of all these phenomena is presented in this paper in two-dimensions trough
the Transmission-Line Matrix (TLM) method.

1 Introduction

Nowadays, urban noise represents a major environ-
mental pollution. Sound propagation modelling in
urban spaces should allow a better understanding
of the city plannings impacts. Various energy ap-
proaches can be used, like ray or beam tracing [1].
However, such methods are restricted to middle and
high frequencies. Moreover, it is often difficult to
implement the multiple phenomena that occur si-
multaneously in such areas. Indeed, sound propa-
gation in urban spaces combines many phenomena
like reflections, diffraction, diffusion or even sound
absorption effects and is affected by micrometeo-
rological conditions. Temporal wave approaches,
like finite difference in time domain (FDTD) [2] or
parabolic equation solving [3], seem very promis-
ing. Recently, some authors have shown that the
Transmission-Line Matrix (TLM) method is also
well suitable to model sound propagation in com-
plex areas [4, 6]. This model is based on the Huy-
gens’ principle that enunciates that a wavefront can
be decomposed in a set of secondary sources emit-
ting wavelets; these wavelets can again be broken
up in a new generation of secondary sources, and so
on. This principle has been numerically adapted by
Johns and Beurle [7] at the beginning of the seven-
ties for some applications in electromagnetism and
has been more recently applied to acoustics [8]. The
present paper deals with the applicability of this
temporal method for combining all phenomena af-
fecting sound propagation in urban spaces.

2 Principle

2.1 Basics of TLM

For simplicity, the method is outlined in two di-
mensions, but can be easily extended in three di-
mensions. The TLM method is based on the dis-
cretization of the domain of interest by means of
nodes regularly spaced out. Each node is linked
with adjacent nodes through transmission lines of
identical length ∆l. A two-dimensional cartesian
grid is so formed by a transmission lines network,
four branches of characteristic impedance Z0 being
connected with each node.

Considering an unitary impulse arriving to a node
from one transmission line (Fig. 1(a)), the impedance
discontinuity met by the impulse at the node in-
duces the reflection of one part of the field back
through this incident transmission line, whereas the
other part of the field is transmitted towards the
three other transmission lines connected with this
node (Fig. 1(b)). This step ensures the transforma-
tion of incident impulses to a node into scattered
impulses from this node, according to the Huygens’
principle.
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Figure 1: Simple case of (a) an incident unitary
impulse from a source node (in red) and of (b)

scattered impulses from the receiver node.

The field diffusion in the domain is performed using
connexion laws that associate scattered impulses
from a first node at a given time iteration with in-
cident impulses to a second node at the next time
iteration.
Consequently, the TLM method consists in both
spatial and temporal discretizations.

2.2 TLM modelling of inhomogeneous and
lossy media

The sound speed in the TLM network can be ad-
justed adding an open-circuited stub of length ∆l/2
and of characteristic admittance Y = ηY0 to the
node [9]. A dissipative medium is modelled intro-
ducing another stub with an anechoic termination
of conductance G = ζY0 (Fig. 2). The scattered
impulses tS

n
(i,j) at branch n of the node (i, j) and

at the time t are related to the incident impulses
tI

n
(i,j) at the same node and at the same time t by
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the following equation:

tS̃ (i,j) = D̃ tĨ (i,j), (1)

where tĨ (i,j) and tS̃ (i,j) are respectively the vectors
composed of the incident impulses tI

n
(i,j) and by

the scattered impulses tS
n
(i,j) through each trans-

mission line n, expressed as

tĨ (i,j) =
[
tI

1 ; tI
2 ; tI

3 ; tI
4 ; tI

5
]T

, (2a)

tS̃ (i,j) =
[
tS

1 ; tS
2 ; tS

3 ; tS
4 ; tS

5
]T

. (2b)

D̃ is a scattering matrix given by

D̃ =
2

η + ζ + 4


a 1 1 1 η
1 a 1 1 η
1 1 a 1 η
1 1 1 a η
1 1 1 1 b

 , (3)

with

a = − (η/2 + ζ/2 + 1) , (4a)

and

b = η/2− (ζ/2 + 2) . (4b)
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Figure 2: Two-dimensional TLM complex node
consisting of four main transmission lines and of
two extra branches: the line 5 is used to vary the
sound speed in the TLM network (inhomogeneous

atmosphere), and the line 6 is employed to
introduce dissipation (atmospheric attenuation).

The diffusion of the acoustic field in the domain
is obtained by the following connexion laws that
expressed the incident impulses at time t + ∆t ac-
cording to the scattered impulses at adjacent nodes
at time t, ∆t corresponding to the time required for

an impulse to travel a transmission line (i.e. a dis-
tance ∆l):

t+∆tI
1
(i,j) = tS

2
(i−1,j), (5a)

t+∆tI
2
(i,j) = tS

1
(i+1,j), (5b)

t+∆tI
3
(i,j) = tS

4
(i,j−1), (5c)

t+∆tI
4
(i,j) = tS

3
(i,j+1), (5d)

t+∆t I
5
(i,j) = t S

5
(i,j). (5e)

The total pressure tP (i,j) at node (i, j) is given by:

tP (i,j) =
2

η + ζ + 4

(
4∑

n=1

tI
n
(i,j) + η tI

5
(i,j)

)
. (6)

The combination of Eqs (1), (5) and (6) leads to
a finite difference form of the wave equation that
permits to define the propagation speed of the wave
front in the TLM network according to the sound
speed c0:

cTLM =
√

2
η + 4

c0. (7)

In the three-dimensional case, Eq.(1) remains valid.
The vectors tĨ (i,j,k) and tS̃ (i,j,k) are then composed
of seven impulses, adding the impulses in the third
direction. The scattering matrix D̃ becomes a 7×7
matrix, similar to Eq.(3), with coefficients a and b
a bit different than ones given by Eqs.(4). Two
connexion laws must also be added to Eq.(5). To
limit the extra numerical cost related to the three-
dimensional modelling, another spatial discretiza-
tion form based on a tetrahedral mesh structure
enables to reduce the size of the vectors composed
of the incident impulses and of the scattered im-
pulses, as well as the size of the scattering matrix,
to the two-dimensional case ones [5].

3 Urban application

3.1 Anisotropic sound speed gradients

Despite the fact that no experimental studies have
been carried out to estimate the micrometeorologi-
cal effects on the sound propagation in urban areas,
it can be assumed that vertical temperature gradi-
ents and wind can have a non negligible impact.
An inhomogeneous atmosphere (see §2.2) can be
modelled with the TLM approach from the effec-
tive sound speed definition [6]:

ceff (i,j)
=
√

γ R T (i,j) + W (i,j).u (i,j), (8)

where γ corresponds to the specific heats ratio, R is
the perfect gas constant, T (i,j) represents the tem-
perature at node (i, j), W (i,j) is the wind vector
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and u (i,j) is a unit vector giving the acoustic sound
waves direction of propagation. The η parameter
is then given by:

η (i,j) = 4

( c0

ceff (i,j)

)2

− 1

 . (9)

The direction of the sound propagation is deter-
mined by means of the ratio

u (i,j) =
Imoy (i,j)∣∣∣∣∣∣Imoy (i,j)

∣∣∣∣∣∣ , (10)

where Imoy (i,j)
is the averaged intensity vector that

is expressed as an arithmetic mean of the intensity
vector around the central point (i, j), so that:

Imoy (i,j)
=

1
(2ε + 1)2

i+ε∑
i−ε

j+ε∑
j−ε

I (i,j), (11)

with ε the span of the average. The intensity vector
is calculated by the scalar product of the sound
pressure and the particle velocity vector, as

I (i,j) = p (i,j).v (i,j). (12)

The x and y directional components of the particle
velocity vector can be evaluated by the expressions
[10]:

tvx (i,j)
=

tI
1
(i,j) − tI

2
(i,j)

ρ0 cTLM
, (13a)

tvy (i,j)
=

tI
3
(i,j) − tI

4
(i,j)

ρ0 cTLM
. (13b)

3.2 Atmospheric attenuation

Atmospheric attenuation can not be neglected when
dealing with long range sound propagation, like it
is the case in urban areas. The atmospheric absorp-
tion coefficient is frequency-dependent and can be
exactly modelled adding digital filters to the orig-
inal TLM configuration [11]. However, this tech-
nique seems very expensive in term of computa-
tional burden. As a first approach, the atmospheric
attenuation can be implemented by means of the
dissipative parameter ζ (Fig. 2), which can be cal-
culated according to the atmospheric absorption
coefficient α expressed in dB.m−1:

ζ = −α
√

2 (η + 4) ∆l
ln (10)

20
. (14)

3.3 Complex impedance boundaries

Boundary conditions are most often formulated in
the frequency domain by a complex impedance.

This kind of condition can be implemented in time
domain models using a polynomial representation
of the complex impedance written as [12]:

Zb (ω) =
∞∑

n=−∞
an [jω]n . (15)

Given that1

∂f (t)
∂t

FT


IFT

jωF (ω) , (16a)∫ t

−∞
f (τ) dτ

FT


IFT

1
jω

F (ω) , (16b)

the sound pressure at the boundary can be evalu-
ated according to the particle velocity vn normal to
the boundary and a second order approximation of
the complex impedance (Eq.(15)) by

p (t) = a0vn (t) + a−1

∫ t

t0

vn (τ) dτ

+a−2

∫ t

t0

∫ t′

t0

vn (τ) dτdt′. (17)

The resulting pressure on the boundary and the
particle velocity vector component normal to the
boundary can be expressed by means of the scat-
tered impulses from the nodes located on both sides
of the boundary, tSin standing for the scattered im-
pulse from the node situated inside the simulated
domain, and tSout standing for the scattered im-
pulse from a virtual node placed outside. This leads
to:

tSout =
1

1 + B0,1,2

[
tSin (−1 + B0,1,2)

r∑
r

+(B1,2)
t−∆t∑
τ=t0

(τSin − τSout)

+A−2

t−∆t∑
t′=t0

t′∑
τ=t0

(τSin − τSout)

 ,

(18)

with

B0,1,2 =A0 + A−1 + A−2, (19a)
B1,2 =A−1 + A−2, (19b)

A0 =a0
cTLM

c0
, (19c)

A−1 =a−1
cTLM

c0
∆t, (19d)

A−2 =a−2
cTLM

c0
(∆t)2 . (19e)

1The acronyms FT and IFT stand respectively for Fourier
Transform and Inverse Fourier Transform.
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3.4 Absorbing boundaries

The simulation of sound propagation in open space
imposes the use of absorbing boundaries (AB) to
reduce unwanted reflections on opened extremities.
A first technique consists in a Taylor’s series expan-
sion of the sound pressure at the boundary tp

AB

according to the sound pressure (t−∆t)p1 at time
t − ∆t and at the node adjacent to the boundary
node located on the normal to the front, namely
[13]:

tp
AB = (t−∆t)p1 + ∆t

∂(t−∆t)p1

∂t
+

∆t2

2!
∂2

(t−∆t)p1

∂t2

+
∆t3

3!
∂3

(t−∆t)p1

∂t3
+ o

(
∆t3

)
.(20)

A second order approximation of Eq.(20) leads to:

tp
AB
2 =

5
2 (t−∆t)p1 − 2(t−2∆t)p2 +

1
2 (t−3∆t)p3, (21)

where (t−2∆t)p2 and (t−3∆t)p3 are the sound pres-
sures calculated at previous time iterations and at
adjacent nodes on the normal to the boundary, as
presented at Fig. 3.

Figure 3: Taylor’s series expansion of the sound
pressure at the boundary according to the sound
pressures at adjacent nodes on the normal to the

front and at previous time iterations.

The major advantage of this technique is, in oppo-
sition to the Perfectly Matched Layer (PML) tech-
nique [14], that the simulation area is not enlarged.
Indeed, initially proposed by Bérenger to solve un-
bounded electromagnetic problems [15], PML con-
sist in an absorbing medium extending the spatial
domain of interest.

4 Simulations

The two-dimensional TLM model presented above
has been implemented with Matlabr. The connex-
ion laws (Eq.(5)) are programmed using Toeplitz
matrices [16] that permit to shift scattered impulses
calculated at a given time iteration to obtain inci-
dent impulses to adjacent nodes for the next time
iteration.
A canyon street section of 4 m width and 6 m

height, illustrated at Fig. 4, has been simulated.
The spatial discretization criterion is chosen as ∆l =
λmin/40, with λmin the minimal wavelength of in-
terest (λmin = 48 10−2 m, i.e. a maximal fre-
quency fmax = 1 kHz), corresponding to a dis-
tance of 12 10−3 m between two adjacent nodes.
The ground is implemented by means of a first
order polynomial approximation of the complexe
impedance condition (see §3.3). The polynomial
coefficients are chosen in order to reproduce the
ground effect obtained with the Delany-Bazley impedance
model for a flow resistivity σ=1000 c.g.s.Rayls.m−1,
namely a0 = 12.4 and a−1 = 6.32 10−4 [17]. The
street walls are perfectly reflective and the top is an
absorbing boundary of second order (see §3.4). The
atmosphere is homogeneous and non-dissipative. The
source is located at 1 m high and 1 m from the left
side wall (Fig. 5(a)).

P
e
rf

e
c
tl

y
re

fl
e
c
ti

v
e

b
o
u
n
d
a
ry

P
e
rf

e
c
tl

y
re

fl
e
c
ti

v
e

b
o
u
n
d
a
ry

Complex impedance boundary

Absorbing boundary

Figure 4: Street section geometry.

Different kind of sound sources, like sinusoidal or
gaussian sources, can be easily implemented. Simu-
lations presented below have been carried out with
an unitary impulse emitted at a source node. The
results obtained for the field of sound pressure at
successive time iteration are presented at Fig. 5,
showing that reflections on the street walls, as well
as diffraction in the street corners, are accurately
modelled. Moreover, the top of the street section
absorbs the field of acoustic pressure entirely. The
Delany-Bazley condition effect does not appear re-
ally in the simulations. However, the numerical
scheme is stable, what is already promising.

5 Conclusion

The TLM method is a well suitable method to
model sound propagation in confined domains as
well as in open spaces. Diffraction, reflection and
diffusion are well-modelled, and anisotropic sound
speed gradients, atmospheric attenuation and spe-
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(a) (b)

(c) (d)

Figure 5: Sound pressure obtained for an unitary
impulse emitted in the left down corner of the

street section, at successive time iterations: after
(a) 0.95 ms, (b) 8.80 ms, (c) 10.68 ms and (d)

15.63 ms.

cific boundary conditions can be implemented with
this method. A two-dimensional TLM model has
been presented and a simple example is given for
modelling the sound propagation in a canyon street.
The next step will consists in comparing a three-
dimensional TLM model with numerical and exper-
imental results.
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