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The edge effect of sound absorbing materials is a well-known phenomenon in room acoustics. It is the
result of diffraction of sound waves on the edges of an absorbing sample. Without careful consideration
of this effect it leads to inaccurate values for the absorption coefficient as measured in a reverberation
chamber. Mathematical analysis has given a satisfactory picture of the phenomenon and the numerical
data for the additional absorption as a function of frequency explain much of the deviation in the experi-
mental data in the reverberation room. Somewhat surprising was that the extra-absorption is significant
for oblique incidence. This means that diffusivity of the sound field is most important.
This paper deals with some specific mathematical details about the diffraction field, such as the field
direct above the absorbing strip and in general the diffraction pattern in the space above the plane of
the strip using FDTD methods.

1 Introduction

The scattering and absorption of the sound waves are
relevant for an accurate assessment of the absorption
coefficient of absorbing samples made by porous mate-
rials. The most appropriate facility in this respect is the
reverberation room, in which finite patches of material
can be tested using the reduction of the reverberation
time. Already in the years fifty some doubts were cast on
the method since the absorption coefficients found were
quite variable, but worse, above the 100 %. It was clear
that the sizes of the sample played some role. Through
the work of Kosten[1] and Kuhl [2], it became clear that
the edge length was important and that the diffraction
on the edges of the impinging sound waves was respon-
sible for an increased absorption. Kosten proposed a
manageable formula to quantize the effect

αE = αstat + β · E, (1)

in which αE denotes the absorption coefficient measured
in a reverberation room with the aid of, for example,
Eyring’s reverberation formula; αstat is the absorption
coefficient for an infinite sample for random incidence
of sound; E = relative edge length, i.e. the ratio be-
tween perimeter and area, and β is a parameter indicat-
ing the increase of absorption by the diffraction around
the edge. See also Ten Wolde [3]. This latter factor is
about 0.25 m−1 and frequency-dependent with a maxi-
mum at 400-500 Hz.

The additional absorption has attracted much at-
tention of research, even already in the years fifty [4, 5].
Several mathematical models have used to obtain some
insight into the effect and to get some quantative data
on the magnitude of the effect. The most well-known
paper is due to Northwood [5].

Since it was evident from experimental data that it is
by and large an true edge effect, De Bruijn[6] elaborated
the model using an absorbing half-plane. The data for
the additional absorption in the form β agreed quite well
with the experimental data.

This paper discusses a better model: the strip of
absorbing material embedded in a sound-hard infinite
plane.The additional absorption can be calculated with
the aid of an efficient algorithm. Especially the interac-
tion of the two scattered edge waves can be evaluated.
The boundary condition of the absorbing surface has
been expressed into the Robin boundary condition. This
is, however, a debatable condition. For this reason the
scattered field has been observed via the FTDT method
using a true porous material.

2 Mathematical background

The model starts with the assumption of a plane wave
incident upon an absorbing strip. See Fig.1. A plane
sound wave is impinging under arbitrary angle θ. The
total field is written as the superposition of three con-
tributions: the incident wave field Φ(i), a field Φ(r) re-
flected against an acoustically hard boundary of infinite
extent and a scattered field Φ(s). Hence:
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Figure 1: Configuration of the diffraction problem.

Φ(t) = exp
[
jαox + jγoy

]
+ exp

[
jαox− jγoy

]
+Φ(s), (2)

in which αo = k sin(θ) and γo = k cos(θ); ϕ = 0.
Firstly a suitable representation for Φ(s) is sought.

An elementary solution to the Helmholtz equation is the
plane wave:

exp
[
−jαx ± j(k2 − α2)

1
2

]
. (3)

If (k2 − α2)
1
2 is real, Eq. (3) represents a uniform

plane wave; if on the other hand (k2−α2)
1
2 is imaginary

or complex, Eq. (3) represents an non-uniform, evanes-
cent plane wave. Now it can be shown that any solution
of the Helmholtz equation can be brought into the form
of an angular spectrum of plane waves [7]:

1
2πj

∫
L

f(α) exp
[
±jαx ± j(k2 − α2)

1
2

]
dα, (4)

by a suitable choice of the integration path L and the
function f(α). Such a representation is closely linked
with the expression of an arbitrary function by means
of a Fourier integral. The function f(α) is the spec-
trum function which specifies in terms of amplitude and
phase, the weight attached to each plane wave of the
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spectrum. Without loss of generality a suitable fixed
path of integration can be selected so that the problem
under consideration becomes a matter of determining
the appropriate spectrum function f(α). A general so-
lution is in the form:

Φ(s)(x, z) =
1

2πj

∫
L

f(α) exp
[
−jαx − j(κ2 − α2)

1
2 z

]
dα,

(5)
by a suitable choice of the integration path L and the
function f(α).
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Figure 2: Path of the integration contour in the
complex plane of α.

To reach a solution it is needed to formulate an ex-
pansion of the field just above the strip. A Fourier series
in a specific form has been chosen for z = 0:

Φ(t)(x, 0) =
∞∑

m=0

Am cos[πm(x/d− 1
2 )], |x| < d/2, (6)

where Am is the complex amplitude of the field expan-
sion of order m. The field expansion function cos[πm(x/d−
1
2 )] is orthogonal, since for the case m is even the func-
tion is symmetric across the strip width and for m un-
even the function asymmetric. There are now two rep-
resentations of the total field above the strip, in which
either the spectrum functionf(α) in Eq. (5) or the con-
stants Am in Eq.(6) can be considered as unknowns.
One of these unknowns can be eliminated with the aid
of the boundary conditions in the plane z = 0:

∂Φ(t)

∂z
= jkηΦ(t), |x| < d/2; (7)

∂Φ(t)

∂z
= 0, |x| > d/2, (8)

where η = the reduced specific acoustic admittance of
on the surface of the material. Note that Eq.(7) is the
Robin boundary condition. In fact, the elimination of
the spectrum function f(α) has been chosen. A system
of linear equations in which the amplitudes Am occur as
unknowns, is obtained. After some analysis an infinite
system of equation for the amplitudes Am is obtained:

Am = bm −
∞∑

n=0

Um,n · An, (m = 0, 1, 2, · · ·) (9)

in which:
bm

def= 2εm · vm(−α0), (10)

Um,n
def=

kη · d · εm

2π

∫
L

vm(α) · v∗n(α)
(κ2 − α2)

1
2

dα, (11)

where:

vm
def=

1
d

∫ d/2

−d/2

exp(−jαx) cos[mπ(x/d − 1
2 )]dx (12)

= jα

[
exp(−jαd/2) − (−1)m · exp(+jαd/2)

]
d(α2 − π2m2/d2)

. (13)

By virtue of the symmetry properties of vm(α) and the
path of integration L, it appears that the matrix ele-
ments equal zero, if m is even and n is odd or m is
odd and n is even. This system can be solved by the
Jacobi iteration method, because the diagonal matrix
elements are significantly dominant with respect to the
off-diagonal elements. The only numerical problem is
the evaluation of the integral elements Um,n. This takes
some effort to arrive at the correct values in view of the
branch points at α = k and the pole at α = αo.

It is a simple, efficient algorithm to calculate the field
in any point as a function of the admittance, width and
angle of incidence.

3 Field above the strip

3.1 Pressure amplitude just above the
strip

An interesting subject is the sound pressure distribu-
tion on the absorbing strip due to the reflection of a
plane wave. The pressure amplitude far outside on the
hard surface is naturally twice the incident sound pres-
sure amplitude. Closer to the strip the pressure must
be lower because of the soft surface of the strip. This
phenomenon yields an interesting interference pattern
for the pressure on the surface.

On the surface of the strip the sound pressure am-
plitude is given per definition by Eq. (6).

The amplitudes have been solved by the iteration
procedure of the previous section, hence the absolute
value of the sound pressure (as a function of x) is simply:

√
|Φ(t)(x, 0)|2 =

√√√√|
∞∑

m=0

Am cos[πm(x/d − 1
2 )]|2. (14)

The absolute value of the sound pressure (normalized
to the incident amplitude) is presented in two pictures:
Figs 3 and 4.
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Figure 3: Absolute pressure amplitude just above the
strip as a function of position just above the absorbing

strip. Strip width = 1 m.
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From the graphs it is evident that the pressure am-
plitude oscillates around the line of the absolute pres-
sure amplitude for the infinite sample, while above the
sound-hard surface the amplitude fluctuates around the
value 2, being the value for sound-hard reflection. For
normal incidence the pattern is symmetrical around the
centre of the strip. Already on the strip near the edges
the amplitude is higher than nominal value. This effect
is more significant at oblique incidence. This will lead
finally to an additional absorption.

3.2 Additional absorption

The absorption coefficient can be defined as the ratio
of the absorbed power and the incident power, when no
strip is present. The time-averaged power absorbed by
a strip per unit width in the Y-direction is:

Pa =
1
2
Re(η)
ρa · ca

·
∫ d/2

d/2

|Φ(t)(x, 0)|2dx. (15)

The incident power is: 1
2 cos(θ)/(ρa · ca). The true ab-

sorption coefficient becomes then:

atrue =
Re(η)

d · cos(θ)
·
∫ d/2

d/2

|Φ(t)(x, 0)|2dx. (16)

Upon substitution of the Fourier series expansion for the
total field onto the strip into Eq.(6) and evaluating the
integrals we obtain:

atrue =
Re(η)

d · cos(θ)

∞∑
m=0

|Am|2/εm, (17)

(in which εm = 2 for m = 0 and εm = 1 for m �= 0).
For very wide strips the absorption coefficient ap-

proaches the regular value for infinite surfaces:

aθ =
4 · Re(η) · cos(θ)

[cos(θ) + Re(η)]2 + Im(η)2
. (18)

Due to the edge effect the absorbed power is increased
considerably and the ratio can rise above the 100 %.
From the figures below it is clear that for very narrow

strips the absorption coefficient can be significant, es-
pecially for oblique incidence. This indicates again the
importance of the diffusivity of the field in a reverbera-
tion chamber.
It can be observed from Fig. 5, that for a strip width
larger than 1 m, the additional absorption is marginal,
certainly for normal and almost normal incidence. For
smaller widths the absorption coefficient rises sharply.
For very grazing incidence, it appears that the absorp-
tion coefficient is very significant, far more than the
value of the infinite sample. This seems a bit strange,
but it is in agreement with the results of the half-plane
model. It is, however, the question whether the Robin
boundary condition (Eq.(7)) is a good descriptor of the
sound absorption at grazing incidence.
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Figure 5: Absorption coefficient as a function of strip
width. Sillan is an absorbing material.

4 Field in the space above the ab-

sorbing strip

The field is easy to calculate with a combination of the
expression for the field and the amplitudes. From the
two figures 6 and 7, the edge effect is clearly seen. Fig-
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Figure 6: Total field above the strip.

ure 6 presents the interference pattern of the incident,
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Figure 7: Scattered field above the strip.

reflected and scattered field together, a kind of standing
wave. The influence of the soft strip is observed by the
hollow in the interference pattern above the strip. The
next figure presents the image for the scattered field
Φs(x, z). From both edges the so-called edge wave is
clearly visible.

5 FDTD approach

The Finite-Difference Time-Domain method is a pow-
erful apparatus to visualize wave propagation and dif-
fraction. It uses directly the two basic Euler equations
and by taking finite steps in time and space the pres-
sure and particle velocities in discretized points can be
calculated in a straightforward manner. The method
is basically simple but the practical realization is cer-
tainly not [8]. The big advantage is that diffraction can
be made visible for obstacles which are not amenable for
exact analysis. In the present problem the scattering of
an absorbing strip can be made clearly apparent and in
principle to be compared with exact data.

The basic formulation of the FDTD approximation
uses a Cartesian staggered grid with pressures and par-
ticle velocity as unknown quantities.The acoustical pres-
sure is determined at the grid positions (mΔx, nΔy) at
time t = iΔx, with Δx and Δy the spatial discretization
and Δt the time discretization step. The indices m, n
mark the spatial points: the index i marks discrete time.
The two components of the particle velocity (ux, yy) are
determined at positions half way between location of the
pressures:

u
[i+ 1

2 ]
x [(m + 1

2 )x, nΔy]; (19)

u
[i+ 1

2 ]
y [mΔx, (n + 1

2 ])Δy]. (20)

and at intermediate time t = (i + 1
2 )Δt. The reason for

this trick is that the pressure and velocities cannot be
known at the same times and positions in view of the
Euler differential equations

−∂ux

∂t
=

1
ρa

∂p

∂x
; (21)

−∂uy

∂t
=

1
ρa

∂p

∂y
; (22)

∂p

∂t
= −ρac2

a

[∂ux

∂x
+

∂uy

∂y

]
. (23)

The difference equations read now:

u
[i+ 1

2 ]
x (m + 1

2 , n) =

u
[i− 1

2 ]
x (m + 1

2 , n) − Δt

ρ0δx
×

[
p[i](m + 1, n) − p[i](m, n)

]
,

(24)
u

[i+ 1
2 ]

y (m, n + 1
2 ) =

u
[i− 1

2 ]
y (m, n+ 1

2 )−
Δt

ρ0δy
×

[
p[i](m, n+1)−p[i](m)

]
, (25)

p[i+1](m, n) = p[i](m, n)+

−ρ0c
2Δt

δx

[
u

[i+ 1
2 ]

x (m + 1
2 , n) − u

[i+ 1
2 ]

x (m − 1
2 , n)

]
+

−ρ0c
2Δt

δy

[
u

[i+ 1
2 ]

y (m, n + 1
2 ) − u

[i+ 1
2 ]

y (m, n − 1
2 )

]
. (26)

The numerical implementation is not easy. A dif-
ficult point is the reflection wave on the boundaries of
the working area, which can be suppressed by special
algorithms, like the PML of Berenger [8].

5.1 Impedance condition

For the present problem the formulation of the impedance
on the strip is a difficult item. There are two approaches.
The first one is the direct translation of the impedance
of the surface in terms of a grid. This leads to [9] :

p(t) = Z−1

∫ t

−∞
un(τ)dτ + Z0 · un + Z1

dun(t)
dt

, (27)

assuming that:

Z(ω) = Z−1/jω + Z0 + jωZ1. (28)

According to Botteldooren [9]:

u
[i+ 1

2 ]
y (m, n + 1

2 ) = (29)

αa · u[i− 1
2 ]

y (m, n + 1
2 ) − βa · 2Δt

ρ0δy
× p[i](m, n + 1),

where:

αa =
1 − Z0 · [Δt/(ρaδy)] + 2Z1/(ρaδy)
1 + Z0 · [Δt/(ρaδy)] + 2Z1/(ρaδy)

(30)

βa =
1

1 + Z0 · [Δt/(ρaδy)] + 2Z1/(ρaδy)
(31)

The second method is the direct model of the porous
material. This model supposes that the skeleton of the
solid is infinitely stiff, while the air in the pores vibrates.
We introduce the following quantities:

• porosity h: this is the volume fractions of the open
pores of the material; 1− h is the volume fraction
of the solid.

• the volume velocity per area unit v: v is the av-
erage of the particle velocity with respect to the
material.
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• Structure factor kK . This indicates the meander-
ing of the pores, which leads to an additional den-
sity increase.

• specific flow resistance σ. This quantity describes
the pressure gradient to overcome the viscous fric-
tion.

One dimensional equation of motion for waves in the
material reads:

− ∂p

∂x
= jωρa · kK · v

h
+ σv; (32)

for the equation of continuity:

−∂v

∂x
=

jωh

(κpa)
p. (33)

This leads to the wavenumber:

k = ω

√
(ρa · kK +

σh

jω
)/(κpa) (34)

and to the specific impedance:

Zs =
1
h

√
(ρa · kK +

σh

jω
) · (κpa). (35)

5.2 Diffracted field

A pulse either as a plane or as a cylindrical wave is sent
to a sound-hard surface with a strip of porous material.
This pulse has the form of cosine train with three peri-
ods with some tapering in the beginning and at the end.
The wave pattern shows clearly the oscillating character
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Figure 8: Diffraction of a plane-wave pulse by a porous
strip. Note that part of the pulse has been reflected.

of the reflected wave on the surface. Only the magnitude
is somewhat different from the exact solution. This sug-
gest that the Robin boundary condition is just a simple
approximation of the porous material.

6 Conclusions

• Diffraction of sound waves around the edge of the
absorbing sample is responsible for the additional
absorption, as observed in the reverberation room.
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Figure 9: Diffraction of a cylindrical wave pulse by a
porous strip.

• The sound pressure amplitude near the edge on
the sample shows an increase towards the value
of amplitude above the sound-hard source being
twice the incident wave amplitude.

• It is debatable whether the Robin boundary con-
dition describes the true diffracted sound field in
an adequate way. The FDTD wave pattern us-
ing true Euler equations for the porous material
suggests serious deviations.
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