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The syllables of speech contain information about the vocal tract length (VTL) of the speaker as well as the 
glottal pulse rate (GPR) and the syllable type. Ideally, the pre-processor for automatic speech recognition (ASR) 
should segregate syllable-type information from VTL and GPR information. The auditory system appears to 
perform this segregation, and this may be why human speech recognition (HSR) is so much more robust than 
ASR. This paper compares the robustness of recognizers based on two types of feature vectors: mel-frequency 
cepstral coefficients (MFCCs), the traditional feature vectors of ASR, and a new form of feature vector inspired 
by the neural patterns produced by speech sounds in the auditory system. The speech stimuli were syllables 
scaled to have a wide range of values of VTL and GPR. For both recognizers, training took place with stimuli 
from a small central range of scaled values. Average performance for MFCC-based recognition over the full 
range of scaled syllables was just 73.5%, with performance falling to 4% for syllables with extreme VTL values. 
The bio-acoustically motivated feature vectors led to much better performance; the average for the full range of 
scaled syllables was 90.7%, and performance never fell below 65%. 

1 Introduction 

When an adult and a child say the same sentence, the 
information content is the same, but the waveforms are very 
different. Adults have longer vocal tracts and heavier vocal 
cords than children. Despite these differences, humans have 
no trouble understanding speakers with varying vocal tract 
lengths (VTLs) and glottal pulse rates (GPRs); indeed, [1] 
showed that both VTL and GPR could be extended far 
beyond the ranges found in the normal population without a 
serious reduction in recognition performance. This 
robustness of human speech recognition (HSR) stands in 
marked contrast to that of automatic speech recognition 
(ASR), where recognizers trained on an adult male do not 
work for women, let alone children [2].  
GPR and VTL are properties of the source of the sound at 
the syllable level in speech communication, quite separate 
from the information that determines syllable type. The 
microstructure of the speech waveform reveals a stream of 
glottal pulses each followed by a complex resonance 
showing the composite action of the vocal tract above the 
larynx on the pulses as they pass through it. The resonances 
of the vocal tract are known as formants and they determine 
the envelope of the short-term magnitude spectrum of 
speech sounds. The formant peak frequencies are 
determined partly by vocal tract shape and partly by VTL, 
which is strongly correlated to height in humans [3]. As a 
child grows into an adult, the formants of a given vowel 
decrease in inverse proportion to VTL, and this is the form 
of VTL information in the magnitude spectrum [4]. When 
plotted on a logarithmic frequency scale the frequency 
dilation produced by a change in speaker size becomes a 
linear shift of the spectrum, as a unit, along the axis – 
towards the origin as the speaker increases in size. This 
paper is concerned with the robustness of ASR when 
presented with speakers of widely varying sizes; that is, 
how the performance of an ASR system varies as the 
spectra of speech sounds expand or compress in frequency 
with changes in speaker size.     
ASR requires a compact representation of speech sounds 
for both the training and recognition stages of processing, 
and traditionally ASR systems use a frame-based 
spectrographic representation of speech to provide a 
sequence of ‘feature vectors’. Ideally the construction of the 
feature vectors should involve segregating the syllable type 
information from the speaker-size information (GPR and 
VTL), and the removal of the size information from the 

feature vectors. In theory, this would help make the 
recognizer robust to variation in speaker size.  

1.1 Encoding of VTL information in 
MFCC  feature vectors 

Most commercial ASR systems use mel-frequency cepstral 
coefficients (MFCCs) as their feature vectors because they 
are believed to represent speech information well, and they 
are robust to background noise. A mel-frequency cepstral 
coefficient is the amplitude of a cosine function fitted to a 
spectral frame of a sound (plotted in quasi-log-frequency, 
log-magnitude coordinates). The MFCC feature vector is 
computed in a sequence of steps. (1) A temporal window is 
applied to the sound and a fast Fourier transform is 
performed on this windowed signal. (Note that the window 
position is stepped regularly along in time without regard to 
the timing of the glottal pulses.) (2) The spectrum is 
mapped onto the mel-frequency scale using a triangular 
filter-bank; the mel-frequency scale is a quasi-logarithmic 
scale, similar to Fletcher’s ‘critical band’ scale or the ERB 
scale [5]. (3) Spectral magnitude is converted to the 
logarithm of spectral magnitude. (4) A discrete cosine 
transform (DCT) is applied to the mel-frequency log-
magnitude spectrum. The MFCCs are the coefficients of 
this cosine series expansion, or ‘cepstrum’. (5) The first 
twelve of these cepstral coefficients form the feature vector; 
the remaining higher-order coefficients are discarded, 
which has the effect of smoothing the mel-frequency 
spectrum as the feature vector is constructed. A zeroth 
coefficient is appended, proportional to the log energy. 

 
Fig. 1 The smoothed spectra of three scaled versions of the 
same vowel produced using the 26-channel mel-frequency 
‘filterbank’. The spectrum shifts upwards in frequency as 
the VTL ratio reduces from 1.3 (red) to 0.8 (magenta). This 
shift is approximately linear in the higher channels, but not 
for low channels. 
Despite their popularity, cepstral coefficients generated 
with a discrete cosine transform have an intrinsic flaw when 
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used to represent speech sounds, which are known to vary 
in acoustic scale. As illustrated in Fig. 1, for a given vowel, 
a change in acoustic scale (or VTL) essentially results in a 
shift of the spectrum on the mel-frequency axis. Since 
MFCCs are generated with a cosine transform, the basis 
functions are specifically prohibited from shifting with 
acoustic scale. That is, a cosine maximum which fits a 
formant peak for a vowel from a given vocal tract with a 
specific length, cannot shift to follow the formant peak as it 
shifts with VTL; the maxima for a given cosine component 
occur at multiples of one specific frequency and they 
cannot be shifted. As a result, a change in speaker size leads 
to a change in the magnitude of all of the cepstral 
coefficients, whereas, a change in the phase of the basis 
functions would provide a more consistent representation of 
syllable type. The size information is still present in the 
MFCCs but it is not easily accessible, and as a result, a very 
large database and excessively long training times would be 
needed to accurately model the sound. 
Most existing techniques for VTL normalization of MFCC 
feature vectors involve attempts to counteract the dilation 
of the magnitude spectrum by warping the mel ‘filters’ (the 
weighting functions that convert the magnitude spectrum of 
the vowel into a mel-frequency spectrum) prior to the 
production of the cepstral coefficients. Unfortunately, the 
process of finding the value of the relative size parameter is 
computationally expensive, and must be done individually 
for each new speaker. The problem is that the relationship 
between the value of a specific MFCC and VTL is 
complicated, and a change in VTL typically leads to 
substantial changes in the values of all of the MFCCs. In 
other words, the individual cepstral coefficients all contain 
a mixture of syllable-type information and VTL 
information, and it is very difficult to segregate the 
information once it is mixed in this way. As a result, the 
MFCCs do not themselves effect segregation of the two 
types of information. The segregation and normalization 
problems are left to the recognizer that operates on the 
feature vectors, and it is this which limits the robustness of 
ASR to changes in speaker size when it is based on MFCC 
feature vectors [6]. 

1.2 AIM feature vectors 

The Auditory Image Model (AIM) [7] simulates the general 
auditory processing that is applied to speech sounds, like 
any other sounds, as they proceed up the auditory pathway 
to the speech specific processing centers in the temporal 
lobe of cerebral cortex.  AIM produces a pitch-invariant, 
size-covariant representation of sounds referred to as the 
size-shape image (SSI). This representation includes a 
simulation of the normalization for acoustic scale that is 
assumed to take place in the perception of sound by 
humans. The SSI is a 2-D representation of sound with 
dimensions of ‘auditory filter frequency on a quasi-
logarithmic (ERB) axis’ by ‘time-interval within the glottal 
cycle.’ The SSI can be summarized by its spectral profile 
[8], and the profile has the same scale-shift covariance 
properties as the SSI itself.  
The SSI profiles produced by the three /i/ vowels described 
above are shown in Fig. 2. They are like excitation patterns 
[5], or auditory spectra, and the figure shows that the 
distribution associated with the vowel /i/ shifts along the 
axis with acoustic scale. Thus, the transformations 

performed by the auditory system produce segregation of 
the complementary features of speech sounds; that is, the 
information about the size of the speaker, and the size 
invariant properties of speech sounds, like vowel type. In 
this way the transformations simulate the neural processing 
of size information in speech by humans. Experiments 
show that speaker size discrimination and vowel 
recognition performance are related: when discrimination 
performance is good, vowel recognition performance is 
good [1]. This suggests that recognition and size estimation 
take place simultaneously. It is assumed that the acoustic 
scale information is essentially VTL information, and that it 
is used to evaluate speaker-size, and that the normalized 
shape information facilitates speech recognition and makes 
the recognition processing robust.  
Section 2.3 shows how the information content of the SSI 
profile can be summarized with a mixture of four Gaussians 
to produce a four dimensional feature vector. The 
performance of a recognizer using these bio-acoustically 
motivated feature vectors is compared with that of a 
recognizer using traditional MFCCs to demonstrate the 
greater robustness of feature vectors based on auditory 
principles.   

 
Fig. 2 SSI profiles of three scaled versions of the vowel /i/ 
with a GPR of 165Hz for a 200 channel ERB filter-bank. 
Apart from frequency effects in the lower channels there is 
a clear linear shift of the vowel spectrum with VTL ratio. 

2 METHOD  

The speech corpus used in this study was compiled by Ives 
et al. (2005) [9] who used phrases of four syllables to 
investigate VTL discrimination. There were 180 syllables 
in total, composed of 90 consonant-vowel and vowel-
consonant pairs. 
The syllables were recorded from one speaker (author RP) 
in a quiet room with a Shure SM58-LCE microphone. The 
microphone was held approximately 5 cm from the lips to 
ensure a high signal to noise ratio and to minimize the 
effect of reverberation.  A high-quality PC sound card 
(Sound Blaster Audigy II, Creative Labs) was used with 16-
bit quantization and a sampling frequency of 48 kHz.  The 
syllables were normalized by setting the RMS value in the 
region of the vowel to a common value so that they were all 
perceived to have about the same loudness.   

2.1  Scaling the syllable corpus  

Once the syllable recordings were edited and standardized, 
a vocoder referred to as STRAIGHT [10] was used to 
generate all the different ‘speakers,’ that is, versions of the 
corpus in which each syllable was transformed to have 57 
combinations of VTL and GPR. The central speaker was 
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assigned a GPR of 171.7 Hz and a VTL of 146.9 mm, 
which was chosen to be midway on the line between the 
average logGPR-logVTL values for men and women. For 
scaling purposes, the VTL of the original speaker was taken 
to be 165 mm. The average values of VTL were taken from 
[3] and the average GPR was taken from [11]. 
A set of 56 scaled speakers were produced with 
STRAIGHT in the region of the GPR-VTL plane 
surrounding the central speaker, and each speaker had one 
of the combinations of GPR and VTL illustrated by the 
points on the radial lines of the GPR-VTL plane in Fig. 3.  
There were seven speakers on each of eight spokes. The 
ends of the radial lines form an ellipse whose minor radius 
is four semi-tones in the GPR direction and whose major 
radius is six semi-tones in the VTL dimension.  The seven 
speakers along each spoke are spaced logarithmically in 
this log-log, GPR-VTL plane. The spoke pattern was 
rotated anti-clockwise by 12.4 degrees so that there was 
always variation in both GPR and VTL when the speaker 
changed. This angle was chosen so that two of the spokes 
form a line coincident with the line that joins the average 
man with the average woman in the GPR-VTL plane. 

 
Fig. 3 The locations of the scaled speakers in the GPR-VTL 
plane: The GPR of the scaled speaker varied between 137 
and 215 Hz; the VTL varied between 11 and 21 cm. The 
central speaker had a GPR of 172 Hz and a VTL of 15 cm. 
The grey ellipses correspond to speakers in the normal 
population as modelled by [12]. 

2.2 The Hidden-Markov Model Toolkit  

The hidden Markov model tool kit (HTK) [13] was used as 
a platform to produce the recognizers.  HTK models speech 
as a sequence of stationary segments, or frames, produced 
by a hidden Markov model (HMM). For an isolated syllable 
recognizer, one HMM is used to model the production of 
each syllable. In all of the experiments in this paper, the 
HMM recognizers were trained on the reference speaker of 
the scaled-syllable database, and the eight speakers closest 
to the reference speaker in the GPR-VTL plane. This 
procedure was intended to imitate the training of a standard, 
speaker-specific ASR system, which is trained on a number 
of utterances from a single speaker. The eight adjacent 
points provided the small degree of variability needed to 
produce a stable model for each syllable. The recognizers 
were then tested on all of the scaled speakers, excluding 
those used in training, to provide an indication of their 
relative performance. 
The audio files used for training were converted to HTK 
files consisting of frames of either MFCCs or AIM feature 
vectors. These HTK files were labeled by syllable and the 

parameters of each syllable model, such as the output 
distribution and the transition probability of each state, 
were estimated from the nine HTK files in the training set. 
In the testing stage the most probable HMM that produced 
each file in the rest of the corpus was found, and the file 
was assigned the syllable corresponding to that HMM as its 
transcription. The transcriptions generated were then 
compared to the true transcription or ‘labels’ of the files 
and a recognition score was calculated.  
An HMM with three emitting states was used for both 
recognizers; three emitting states is sufficient for single 
syllables. The HMM topology was varied and the optimal 
recognition values were found for both recognizers 

2.3 Summarizing the formant frequency 
information of the profiles in a low-
dimensional feature vector  

SSI profiles, as described in section 1.2, were produced for 
10-ms frames of each syllable file in the scaled syllable 
corpus. The profiles were produced using AIM-C, an 
implementation of AIM in C++. Feature vectors were 
produced by first applying power-law compression with an 
exponent of 0.8 to the profile magnitude and normalizing 
them to sum to unity. The profiles were treated like 
probability density functions and a modified expectation-
maximization (EM) algorithm was used to fit a mixture of 
four Gaussians to the profiles. The parameters of this 
mixture of Gaussians make up the components of the low-
dimensional feature vectors. The motivation for this 
technique can be understood by looking at the fit to the 
vowel /i/ shown in Fig. 4. There are three main 
concentrations of energy in vowels and sonorant consonants 
and they have a roughly Gaussian shape. These are encoded 
by three of the Gaussians, while the remaining Gaussian 
encodes a gap in the spectrum between the first and second 
formants.  

 
Fig. 4 Illustration of the feature extraction process: Four 
Gaussians (blue) with fixed variances were fitted to the SSI 
profile (green) of an /i/ vowel using an EM algorithm and a 
minimum-separation limitation. The feature vector is 
constructed from three of the four Gaussian weights plus a 
log-energy term. 
To get a more consistent fit, the EM algorithm is modified 
in three ways: (1) the variance of the Gaussian is not 
updated but remains at the original value of 115 channels 
squared (2) the conditional probabilities of the mixture 
components in each filterbank channel are expanded 
according to a power-law (with an exponent of 0.6) and re-
normalized in each iteration to reduce the overlap between 
Gaussians, and (3) an initialization step is introduced. 
Having a fixed variance reduces the number of degrees of 
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freedom, resulting in a more consistent fit. The optimal 
value of the variance was established during preliminary 
experiments using only the vowels. Having wide Gaussians 
was found to prevent the fitting of Gaussians to individual 
resolved harmonics, reducing sensitivity to pitch variation. 
The initialization step fits two Gaussians to the profile, and 
uses the interval between the means of these Gaussians to 
provide an initial position for the four Gaussians in the 
second stage. The features themselves were the weights of 
the four Gaussians, which since they sum to one can be 
summarized as three parameters. The log of the energy of 
the un-normalized profile was included in the feature 
vector. Recognition performance over the vowels was then 
100%.  It is this method that was used to produce the 
recognition results with the auditory pre-processor reported 
in the next section. 
In summary, a four-dimensional, auditory feature vector 
was produced using the logarithm of the energy of the 
original profile, and three of the Gaussian weights. First and 
second difference coefficients were computed between 
temporally adjacent feature vectors and added to the feature 
vector in all cases. Thus, the length of the AIM feature 
vectors passed to the recognizer was 12 components, 
whereas it was 39 components for the MFCC feature 
vectors. Having feature vectors with a lower dimensionality 
should reduce the time taken to run the training and 
recognition algorithms substantially in full scale systems.  

3 Results and Discussion 

3.1 HMM recognizer operating on MFCC 
feature vectors 

In the initial experiment with the MFCC feature vectors, the 
recognizer was based on an HMM with a topology that had 
three emitting states and a single Gaussian output 
distribution for each state. The recognizer was trained on 
the original speaker and the eight speakers on the smallest 
ellipse nearest to the original speaker. The average 
recognition accuracy for this configuration, over the entire 
GPR-VTL plane, was only 65.0 %. To ensure that the 
results were representative of HMM performance, a number 
of different topologies were trained and tested. Performance 
was best for an HMM topology consisting of four emitting 
states, with several Gaussian mixtures making up the output 
distributions for each emitting state. The number of training 
stages was also varied to avoid over-training. The optimum 
performance, using the best topology, was 73.5 % after nine 
iterations of the training algorithm.  A further experiment 
was carried out using MFCCs produced from a 200 channel 
mel filterbank to check that the performance of the 
recognizer was not being limited by a lack of spectral 
resolution. The performance using these MFCCs was 
 67.7 % for the initial topology with three emitting states 
and 73.3 % using the best topology from the previous 
experiments, indicating that 26-channel resolution was not 
a serious limitation. 
The performance for all of the individual speakers, using 
this topology, is shown in Fig. 5. There is a central region 
adjacent to the training data for which performance is  
100 %; it includes the second ellipse of speakers and 

several speakers along spokes 1 and 5 where VTL does not 
vary much from that of the reference speaker. As VTL 
varies further from the training values, performance 
degrades rapidly. This is particularly apparent in spokes 
three and seven, where recognition falls close to 0 % for the 
extremes, and to a lesser extent on spokes two, four, six and 
eight. This demonstrates that this MFCC recognizer cannot 
extrapolate beyond its training data to speakers with 
different VTLs. In contrast, performance remains 
consistently high along spokes 1 and 5, where the main 
variation is in GPR. This is not surprising since the process 
of extracting MFCCs eliminates most of the GPR 
information from the features. This figure shows the 
performance that sets the standard for comparison with the 
auditory feature vectors. 

 
Fig. 5 Performance of the MFCC recognizer for individual 
speakers across the VTL-GPR plane. The training set was 
the reference speaker and the eight surrounding speakers of 
the smallest ellipse.  Performance is seen to deteriorate 
rapidly as VTL diverges from that of the training region. 
Average performance using this optimum topology was 
73.5 %. 

3.2 HMM recognizer operating on AIM 
feature vectors 

In the initial experiment with the AIM feature vectors, the 
recognizer was based on an HMM with a topology that had 
three emitting states and a single Gaussian output 
distribution for each state, as for the MFCC recognizer. The 
initial recognition rate using the SSI feature vectors was 
84.6 % over the full range of speakers across the GPR-VTL 
plane; this is well above the initial performance with MFCC 
feature vectors. Performance was best for an HMM 
topology consisting of two emitting states, with several 
Gaussian mixtures making up the output distributions for 
each emitting state. The number of training stages was 
again varied. After optimization of the topology and nine 
iterations of the training algorithm, performance rose to 
90.7 %, which is well above the 73.5 % achieved after 
similar optimization with the MFCC feature vectors.  
Performance obtained using this topology for the individual 
speakers across the GPR-VTL plane, is shown in Fig. 6. As 
with the MFCC recognizer, performance is best along 
spokes one and five. However, unlike the MFCC 
recognizer, performance along most of the spokes is near 
ceiling after optimization. The worst performance, for the 
speaker at the end of spoke three, was 66.5 %, which 
compares with 3.8 % in the MFCC case. There is a drop in 
performance at the extremes of spokes three and seven, 
although the drop is small in comparison to that seen in the 
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MFCC case. The results indicate that there is still some 
sensitivity to change in VTL in the AIM feature vectors. 
Since it affects only the extreme VTL conditions, it seems 
likely that it is due to edge effects at the Gaussian fitting 
stage. That is, when a formant occurs near the edge of the 
spectrum, the tail of the Gaussian used to fit the formant 
prevents it from shifting sufficiently to center the Gaussian 
on the formant. If this proves to be the reason, it suggests 
that performance is not limited by the underlying auditory 
representation (the SSI) but rather by a limitation in the 
feature extraction process – a limitation that should be 
amenable to improvement.  

 
Fig.6 Performance of the AIM recognizer for individual 
speakers across the VTL-GPR plane. The training set was 
the same as in the MFCC case. Performance only 
deteriorates for speakers with extreme VTL values. Average 
performance using this optimum topology was 90.7 %. 

4 Conclusion 

In an effort to improve the robustness of ASR recognizers 
to variation in speaker size, a new form of feature vector 
was developed, based on the spectral profiles of the SSI 
stage of the auditory image model (AIM). The value of the 
new feature vectors was demonstrated using an HMM 
syllable recognizer, which was trained on a small number 
of speakers with similar GPRs and VTLs, and then tested 
on speakers with widely different GPRs and VTLs. 
Performance was compared to that of a traditional ASR 
system operating on MFCC feature vectors. When tested on 
the full range of scaled speakers, performance with the 
AIM feature vectors was shown to be significantly better 
(~91 %) than that with the MFCC feature vectors (~74 %). 
Moreover, the auditory feature vectors are far smaller (12 
components) than the MFCC feature vectors (39 
components). The study demonstrates that the high 
resolution, spectral profiles typical of auditory models can 
be successfully summarized in low-dimensional feature 
vectors for use with recognition systems based on standard 
HMM techniques. 
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