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This paper describes a technique dedicated for the localization of acoustic sources in all directions and in the far-
field. Classical beamforming techniques based on planar arrays provide an acoustic map restricted to a limited 
solid angle, but a spherical array does not have such a limitation since there is no preferential direction. In the 
processing called Spherical Harmonics Beamforming (SHB), the sound field on the sphere is decomposed with 
spherical harmonics functions, and then a corrected summation gives the acoustic contribution from a given 
direction. We have used a rigid spherical array, which has the advantage that cabling of microphones and 
integrated cameras can be hidden inside the sphere. A rigid surface also provides better numerical stability in 
connection with SHB. In this study, SHB is evaluated with respect to resolution and dynamic range. Simulated 
and experimental results are presented.  

1 Introduction 

Spherical arrays have recently attracted a lot of interests in 
many acoustic areas: room acoustics, sound field 
reproduction, noise source identification. In this last area, 
planar arrays are widely used for many purposes 
concerning outdoor or external measurements to localize 
acoustic sources. The main drawback of using such array 
shapes in confined spaces is the difficulty to separate 
sources coming from the front and from the rear of the 
microphone array. A back screen can help to solve this 
issue, but only for relatively high frequencies. Additionally 
the resolution of planar arrays decreases dramatically for 
important off-axis angles. Because the microphones are 
‘equally’ distributed in all directions on a sphere, the 
spherical arrays do not suffer from such a variation of the 
resolution regarding the directions. The spherical array is 
therefore a very good tool to localize sources for interior 
noise, like in a car, an airplane or a room. It can be used as 
well for outdoor measurements.  
We are considering here a processing technique called 
Spherical Harmonics Angularly Resolved Pressure 
(SHARP) based on the Spherical Harmonics Beamforming 
(SHB), [1,2]. The main benefit of the SHARP technique is 
that it is dedicated for source localization, and it provides a 
correct pressure contribution estimation for sources at the 
focus points, as is done also by traditional delay-and-sum 
beamforming. We apply this processing on signals 
delivered by microphones on a hard sphere, with integrated 
cameras to provide pictures which are overlaid with the 
acoustic map for a better understanding of the sources. Use 
of a hard sphere, instead of a transparent sphere, gives some 
advantages. Cabling of microphones and cameras are 
hidden inside the sphere. Additionally the hard sphere could 
represent a human head in a first approximation, creating 
the same level of scattering for example in a car cabin. 
Finally, in the context of the SHB, numerical instabilities 
appear in the calculation for particular frequencies when the 
sphere is transparent. 
In this paper, we will introduce the SHB processing from 
which we will derive the SHARP technique. The main 
parameters to characterize an imaging device are the 
resolution and the dynamic range, which means, 
respectively, the capacity to separate two close sources and 
the level range for which we can detect the sources. We 
will describe these parameters in the context of the SHARP 
technique. Simulations and experiments will be finally 
presented to illustrate the performance of this technique. 

2 The SHARP technique 

2.1 Spherical Harmonics Beamforming 

The basic idea of SHB is to map the sound field incident on 
the sphere thanks to the knowledge of the acoustic pressure 
on the spherical array. Consider a single monopole point 
source at the spherical coordinates (r0,θ0,φ0) relative to the 
center of the sphere, producing the following pressure at the 
origin under free-field conditions (with no rigid sphere): 
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The distribution of pressure produced by that point source 
on the rigid sphere is given by [2,3]: 

 ( ) ( ) ( ) ( )∑ ∑
∞

= −=

=
0

*
000 ,,,,,

n

n

nm

m
n

m
nn YYkakrRap φθφθφθ (2) 

where k is the wavenumber and a is the sphere radius. The 
expressions ( )φθ ,m

nY  are the spherical harmonics 
functions, and the symbol * represents the complex 
conjugate. The radial function ( )kakrRn ,  is given by the 
following expression, [4]: 
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Here jn and hn are the spherical Bessel and Hankel 
functions, and dn is given by jn’(ka)/hn

(1)’(ka), ’ being the 
derivative symbol. 
Eq.(2) can be re-written as: 
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where the coefficients m
np  are the spherical Fourier 

transforms of the pressure ( )φθ ,,ap  on the rigid sphere: 
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Decomposing the sound pressure on the sphere with 
spherical harmonics is possible thanks to the following 
orthogonality relation: 
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The comparison of the expressions Eq.(2) and Eq.(3) leads 
to: 
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The ideal beamforming output is a very sharp peak pointing 
to the direction of the source: 
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Or, in terms of spherical harmonics, thanks to the spherical 
Fourier transform (Eq.(3-4)): 
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Using Eq.(6) in this last expression leads to: 
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In practice, the pressure ( )φθ ,,ap  on the sphere is known 
only at the microphone locations, which means that the 
spherical Fourier Transform Eq.(4) is approximated and 
that the summation in Eq.(9) is done until a degree N. The 
choice for N is discussed below. 
Finally the spherical beamforming calculation is given by: 
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2.2  SHARP: pressure contribution 
determination 

The spherical harmonics coefficients for the pressure Eq.(4) 
can be evaluated with an approximate Gaussian type of 
numerical integration: 
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where Q is the number of sensors and ( )iii φθ ,=Ω . The 
microphone positions Ωi and the associated weights ci have 
been derived in such a way that they provide exact 
numerical integration over the full 4π solid angle of any 
angular function containing spherical harmonics of degree 
only up to N.  It can be easily verified that this integration 
property can be true only if: 
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for NnN ≤≤ ,ν . 

Eq.(12) is a discrete orthogonality relation, analog to 
Eq.(5). Replacing the expression of m

np by its approximate 
version Eq.(11), the spherical beamforming expression 
Eq.(10) becomes: 
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  (13) 
A is the correction factor to be determined in order to 
calculate the pressure contribution correctly. As the 
summation in the spherical beamforming calculation 
Eq.(13) is performed until a degree N, the calculated level 

for a source in a particular direction should be corrected 
accordingly. To determine the correction factor A, we 
consider again the monopole point source at the position 
(r0, Ω0) with ( )0 0 0,θ φΩ = . This monopole produces a 
sound pressure at the microphone positions given by Eq.(2): 
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Here and below, the arguments of Rn are omitted for 
simplicity. 
Substitution of Eq.(14) in Eq.(13) and making use of 
Eq.(12) leads to: 
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Averaging the beamforming output Eq.(15) with Ω = Ω0 
over all angles, and using the orthogonality relation (5) 
leads to: 
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Using Eq.(12), we obtain: 
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To get the desired pressure contribution, N Sw P= , from 
Eq.(1), the scaling factor A in Eq.(13) must have the 
following value: 
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It is also possible to perform sound intensity scaling on the 
spherical beamforming output in such away that area-
integration provides a good estimate of the sub-area sound 
power. For that purpose we follow the procedure described 
in [4]. This calculation is carried out below, once we have 
defined the size of the main lobe in the next section. 

3 Capabilities for Source localization  

In this part, we discuss the capabilities of the SHB 
technique for the localization of noise sources in terms of 
resolution and dynamic range.  

3.1 Spatial resolution performance 

Substituting Eq.(6) in Eq.(10) and using some calculation 
properties of spherical harmonics [3] leads to:  

 ( ) ( ) ( ) ( )[ ]Θ−Θ
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+
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π

  

 (19) 
This is the expression of the Point Spread Function (PSF) 
for a unit amplitude source at Ω0, Θ  being the angle 
between the vector directions Ω and Ω0 [3].  Figure 1 shows 
this point spread function for different degrees N from 1 to 
50. 
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Fig. 1 Point spread functions for SHB ( Nw  in dB) for 
different values N from 1 to 50. The levels are normalized 

to 0 dB for each N. 

Figure 1 illustrates the fact that the resolution depends on 
the degree N: higher values N provide better resolution, 
since the main lobe representing a single source direction is 
narrower. 
We have seen previously (paragraph 2.2) a limitation for N 
due to the number and the positions of the microphones. 
Another limitation for N is linked to the radial function Rn 
which drops down after N = ka [3], and then limiting the 
accuracy of the calculations. On the other hand, the 
Rayleigh resolution (full width of the main lobe) is well 
approximated by [3]: 

 
N
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for N between 4 and 40. 
Finally an approximation of the resolution is given by: 
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for 4≥ka . 
Below N = 4, the calculation of the main lobe width gives: 
 65.122 0 π⋅=Θ⋅  for N =1, 45.122 0 π⋅=Θ⋅  for  
N = 2,  and 29.322 0 π⋅=Θ⋅  for N = 3. 

Because of the wavenumber k, the spherical beamforming 
resolution is in practice dependent on frequency: resolution 
improves with increasing frequency. We also notice that 
resolution improves with increasing radius of the sphere.  
Now we know the width of the main lobe, therefore we can 
perform the sound intensity scaling, following the 
procedure described in [5]. The scaling factor α needed to 
obtain the intensity scaled spherical beamforming output is 
defined as: 

 ( ) ( ) 2
, Ω⋅=Ω NIN ww α  (22) 

This quantity INw ,   is defined in such a way that its integral 
over the main lobe equals half of the radiated power Pa, the 
power radiated into the hemisphere containing the array: 
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Considering the expression of the sound field Eq.(1) 
created by a monopole, we obtain for the half power: 
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where ρ is the fluid density, c is the speed of  the sound. 
The PSF Eq.(19) should take into account the scaling 

factor A given by Eq.(18): 
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So the relation Eq.(23) leads to: 
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ε is a non-zero very small value in order to avoid the 
division by 0 for the integrand. The part of this equation 
depending on N, F(N), is calculated numerically and is 
represented on the figure 2 below. This function F(N) is 
fairly well approximated by a function G(N) = 1.17 / N2 and 
also represented on the figure 2 in red. Substituting in 
Eq.(26) Pa by its expression Eq.(24), and replacing F(N) by 
G(N) lead to the following expression of the scaling factor: 
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Considering the relation N = ka, we also obtain: 
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where λ is the wavelength. 

 
Fig. 2 Numerical integration F(N) (see Eq.(26)) for 

different values N (blue curve). The red curve, G(N), is an 
approximation of the blue curve. 

3.2 Dynamic range 

Figure 1 shows also the presence of other lobes which are 
not representative of sources, but they are created by the 
processing. These side lobes may hide low level sources. 
That is why the Maximum Sidelobe Level (MSL) defines 
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the dynamic range of the system; the MSL should be as low 
as possible for a better dynamic range. On figure 1 we can 
see that the MSL is between -16 dB for the lower degrees 
(from N = 2) and -17.5 dB (until N = 50).  
The PSF expression Eq.(19) is correct if the arrangement of 
the microphones ensures that the discrete orthogonality 
relation (12) holds up to the degree N.  Nevertheless it is 
possible to get good results even if this condition is not 
fully satisfied. As an example, we consider on Figure 3 the 
localization of a source at 5 kHz with a 36-channels 
spherical array with radius 0.0975 m. We have ka ≈ 9, and 
we apply the spherical beamforming calculation until 
degree 10, which is higher than the degree N for which the 
orthogonality relation is fulfilled (for this spherical array 
the orthogonality relation holds until N = 5). 

 
Fig. 3 2D plot of the point spread function for a source at  
5 kHz. X-axis is the azimuth, Y-axis is the elevation. The 

processing is done until degree N = 10, dynamic scale: 8 dB 

The simulation illustrated in figure 3 shows the main lobe 
at the center of the graph plus a few sidelobes. The MSL is 
-8.7 dB, which is higher than the value we get from figure 1 
(about -17 dB), but still interesting for localization purpose.  
The microphone distribution on the sphere plays a role for 
the dynamic range, but this is also the case for the degree N. 
To illustrate this point, we consider below the localization 
of a source at 2 kHz, and we apply the spherical 
beamforming processing with various maximum degrees N. 

 

Fig. 4 2D plots of the point spread function for a source at  
2 kHz for N = 1 to 6. X-axis is the azimuth, Y-axis is the 

elevation. Dynamic scale for all graphics: 10 dB 

The figure 4 shows a PSF maps for different value N. We 
notice that there is an optimum value for the MSL at  
N = 4. Not surprisingly, it corresponds to ka ≈ 4. Quickly 
after this optimum, the MSL decrease dramatically (N = 6), 
then the processing is no more able to localize the source. 
For the different microphone arrays we have tested, this 
optimum is always around N = ka, sometimes it is at  
N = ka +1 or ka -1.  
These pictures illustrate also the evolution of the resolution 
with the degree N described in the previous section: the size 
of the main lobe is smaller with the increasing degrees. 

4 Simulations and experiments 

In this section we propose to compare simulated and 
experimental results for different frequencies: 500, 2000 
and 6000 Hz. The experimental tests were performed in 
anechoic room with a spherical array including 36 
microphones and 12 cameras (B&K type 8606). 

 

Fig. 5 36 channels spherical array with 12 cameras 
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At 500 Hz (figure 5), the displayed range is 10 dB. We 
have very similar spot between the two pictures. For the 
frequencies 2 and 6 kHz (respectively figures 6 and 7), we 
have chosen the level range in order to show some side 
lobes. We can see in both cases that the size of the spot is 
the same between experimental and simulated results, but 
also the positions of the side lobes (except for one sidelobe 
at 2 kHz on the figure 6, but it is more probably a reflection 
from the ground). 

 

Fig. 5 Acoustic maps at 500 Hz, simulation and experiment 

 

Fig. 6 Acoustic maps at 2 kHz, simulation and experiment 

 

Fig. 7 Acoustic maps at 6 kHz, simulation and experiment 

5 Conclusion 

In this article, we have presented an extension of the 
Spherical Harmonics Beamforming (SHB) called SHARP 
(Spherical Harmonics Angularly Resolved Pressure) 
dedicated to noise source identification and including a 
correction factor in order to get an estimate of the source 
levels. Also we have derived a sound intensity scaling from 
the SHARP output to provide a good estimate of the sub-
area sound power. Finally the examples show experimental 
results very close to the simulations. 
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