

Conservative initial-boundary value problems for the Wide-Angle PE in waveguides with variable bottoms

Dimitra Antonopoulou ${ }^{\text {a }}$, Vassilios Dougalis ${ }^{\text {b }}$, Frederic Sturm ${ }^{\text {c }}$ and George Zouraris ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Applied Mathematics, University of Crete, 71409 Heraklion, Greece
${ }^{\mathrm{b}}$ Mathematics Department, University of Athens, 15784 Zografou, Greece
${ }^{\text {c }}$ Laboratoire de Mécanique des Fluides et d'Acoustique (UMR CNRS 5509), Ecole Centrale de Lyon, Centre acoustique, 36, avenue Guy de Collongue, 69134 Ecully Cedex, France danton@tem.uoc.gr

We consider the third-order, wide-angle Parabolic Equation (PE) in the context of Underwater Acoustics in a cylindrically symmetric medium consisting of water over a soft bottom of variable geometry. The initial-boundary-value problem for this equation with just a homogeneous Dirichlet bottom boundary condition may not be well-posed, for example when the bottom is downsloping. In previous work we proposed an additional boundary condition that, together with the zero-field condition on the bottom, yields a well-posed problem. Here, we continue our investigation of additional bottom boundary conditions that yield well-posed, physically correct problems. Motivated by the fact that the solution of the wide-angle PE in a domain with horizontal layers conserves its L^{2} norm in the absence of attenuation, we identify additional boundary conditions that yield L^{2}-conservative solutions of the problem. After a range-dependent change of the depth variable that makes the bottom horizontal, we discretize the continuous problems by Crank-Nicolson type finite difference schemes, and show, by means of numerical experiment, that some of the new models yield accurate simulations of the acoustic field in standard, wedge-type domains with upsloping and downsloping bottoms.

1 Introduction

We consider the third-order, Claerbout-type wide-angle parabolic equation (PE) of underwater acoustics in a cylindrically symmetric medium

$$
\begin{equation*}
\left[1+q \beta+\frac{q}{k_{0}^{2}} \partial_{z}^{2}\right] v_{r}=\mathrm{i}(p-q) k_{0}\left[\frac{1}{k_{0}^{2}} v_{z z}+\beta v\right] \tag{1}
\end{equation*}
$$

for $(z, r) \in[0, s(r)] \times[0, T]$, where $v=v(z, r)$, a complexvalued function of the depth z and range r, is the acoustic field generated by a time-harmonic point source of frequency f, k_{0} is a reference wave number, p, q are complex constants such that $p=q+1 / 2$ and $\beta(z, r)$ is a complex-valued function. The problem is posed on a single-layer domain with a variable bottom described by the positive smooth function $z=s(r)$. We supplement (1) by an initial condition modelling the sound source at $r=0$, and a pressure-release boundary condition on the surface $z=0$, i.e. we require that

$$
\begin{align*}
& v(z, 0)=v_{0}(z), \quad 0 \leq z \leq s(0) \\
& v(0, r)=0, \quad 0 \leq r \leq T \tag{2}
\end{align*}
$$

where v_{0} is a given function. We also supplement (1) by the homogeneous Dirichlet bottom boundary condition

$$
\begin{equation*}
v(s(r), r)=0, \quad 0 \leq r \leq T \tag{3}
\end{equation*}
$$

There is a simple numerical and theoretical evidence (see for instance in Refs. [2], [3], [4]) that the initial-boundary-value problem (ibvp) (1)-(3) may not be wellposed, for example if the bottom is downsloping. In Refs. [2] and [3] an additional boundary condition was proposed that together with (1)-(3) yields a well-posed problem. In this note, motivated by the fact that solutions of (1)-(3) conserve the L^{2} norm, i.e. satisfy

$$
\|v(\cdot, r)\|=\left\|v_{0}\right\| \quad \text { for } r \geq 0
$$

where $\|v(\cdot, r)\|:=\left(\int_{0}^{s(r)}|v(z, r)|^{2} \mathrm{~d} z\right)^{1 / 2}$, in domains with a horizontal bottom when β and q are real, we seek additional boundary conditions that will render the problem well-posed and L^{2}-conservative (when β and q are real) even in the presence of variable bottom. We prove that the problem (1)-(3) is L^{2}-conservative if and only if the additional bottom boundary condition is chosen such that

$$
\begin{equation*}
\operatorname{Im}\left\{g_{z}(s(r), r) \overline{g(s(r), r)}\right\}=0, \quad 0 \leq r \leq T \tag{4}
\end{equation*}
$$

where the function g is defined by

$$
g:=q v_{r}-\mathrm{i}(p-q) k_{0} v
$$

We then choose some specific boundary conditions that satisfy (4) and solve numerically the resulting ibvp by a finite difference scheme, after a range-dependent change of the depth variable that renders the bottom horizontal. We study the accuracy, stability, and conservation properties of this scheme in a series of numerical experiments and use it to simulate the acoustic field in standard wedge-type domains with upsloping and downsloping bottoms.

$2 \quad L^{2}$ and H^{1} estimates for various bottom boundary conditions

In the sequel we shall call an ibvp (e.g. the ibvp (1)-(3)) X-stable (where X is a normed linear space of functions of z) if $\|v(\cdot, r)\|_{X} \leq C\left\|v_{0}\right\|_{X}$ for $0 \leq r \leq T$ and some constant C independent of v_{0}. In the upsloping case we have
Proposition 2.1 If β, q are real, and $\dot{s}(r) \leq 0, r \in$ $[0, T]$, then the ibvp (1), (2), (4) is L^{2}-stable.
For general bottom profiles, we have
Proposition 2.2 If β and q are real, then the ibvp (1)(3) is L^{2}-conservative, if and only if (4) holds.

First, observe that (1) may be written as

$$
\begin{equation*}
v_{r}+\beta g+\frac{1}{k_{0}^{2}} g_{z z}=0 \tag{5}
\end{equation*}
$$

The proof of the results given in Propositions 2.1 and 2.2 can be easily achieved by multiplying (5) with $\overline{g(z, r)}$ and integrating over $0 \leq z \leq s(r)$. Integrating by parts, taking imaginary parts, and using the fact that $g(0, r)=$ 0 we arrive at

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{0}^{s(r)}|v(z, r)|^{2} \mathrm{~d} z\right)=\dot{s}(r)|v(s(r), r)|^{2} \\
& -\frac{2}{(p-q) k_{0}^{3}} \operatorname{Im}\left\{g_{z}(s(r), r) \overline{g(s(r), r)}\right\}
\end{aligned}
$$

where a dot denotes differentiation with respect to r. Hence, using (3),

$$
\begin{align*}
& \|v(\cdot, r)\|^{2}-\left\|v_{0}\right\|^{2}= \\
& -\frac{2}{(p-q) k_{0}^{3}} \int_{0}^{s(r)} \operatorname{Im}\left\{g_{z}(s(\tau), \tau) \overline{g(s(\tau), \tau)}\right\} \mathrm{d} \tau \tag{6}
\end{align*}
$$

from which the propositions follow.
The following result concerns the H^{1}-stability of the problem (1)-(2) under various bottom boundary conditions.

Proposition 2.3 The solution of the problem (1)-(2) is H^{1}-stable provided the following holds:
(i) For $0 \leq r \leq T, \dot{s}(r)\left|v_{z}(s(r), r)\right|^{2} \leq 0$ and

$$
\operatorname{Re}\left\{g_{z}(s(r), r) \overline{v(s(r), r)}\right\}=0
$$

(ii) $\beta, q \neq 0$ are real, and $k_{0} \max _{r \in[0, T]} s(r)$ is sufficiently small.
In order to prove this result we multiply (1) by $\overline{v(z, r)}$ and integrate over $0 \leq z \leq s(r)$. Taking real parts we see that

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} r}\left(\int_{0}^{s(r)}\left[\left|v_{z}\right|^{2}-\frac{k_{0}^{2}}{q}(1+q \beta)|v|^{2}\right] \mathrm{d} z\right)= \\
& -\frac{k_{0}^{2}}{q} \int_{0}^{s(r)} \partial_{r}(1+q \beta)|v|^{2} \mathrm{~d} z+\dot{s}(r)\left|v_{z}(s(r), r)\right|^{2} \tag{7}\\
& -\dot{s}(r) \frac{k_{0}^{2}}{q}(1+q \beta(s(r), r))|v(s(r), r)|^{2} \\
& +\frac{2}{q} \operatorname{Re}\left\{g_{z}(s(r), r) \overline{v(s(r), r)}\right\}
\end{align*}
$$

Using now Poincaré's inequality, integrating over r and using the fact that

$$
1-C\left(\frac{k_{0}^{2}}{q} \max _{z, r}|1+q \beta|\right)>0
$$

for some positive constant C (this follows from (ii)), we arrive at the H^{1} estimate

$$
\left\|v_{z}(\cdot, r)\right\| \leq C^{\prime}\left\|v_{z}(\cdot, 0)\right\|
$$

Under the hypotheses of Proposition 2.3 we conclude therefore that

1. The ibvp (1)-(3) is H^{1}-stable, if the bottom is upsloping $(\dot{s} \leq 0)$.
2. We observe that (3) and the condition $g(s(r), r)=$ 0 gives $v_{r}(s(r), r)=0$, hence

$$
v_{z}(s(r), r)=0
$$

Thus the ibvp (1)-(3) with the extra condition $g(s(r), r)=0$ is L^{2}-conservative and H^{1}-stable for any bottom profile.
3. The ibvp (1), (2) with the bottom boundary condition $g_{z}(s(r), r)=0$ is L^{2} - and H^{1}-stable, provided the bottom is upsloping $(\dot{s} \leq 0)$.

3 Finite difference schemes

If we perform the transformation $y=z / s(r), t=r$, $u(y, t):=v(z, r)$ we see that (1) becomes

$$
\begin{align*}
u_{t} & -y \frac{\dot{s}(t)}{s(t)} u_{y}+c(y, t)\left\{q\left[u_{t}-y \frac{\dot{s}(t)}{s(t)} u_{y}\right]-\mathrm{i}(p-q) k_{0} u\right\} \\
& +\frac{1}{k_{0}^{2} s^{2}(t)} \partial_{y}^{2}\left\{q\left[u_{t}-y \frac{\dot{s}(t)}{s(t)} u_{y}\right]-\mathrm{i}(p-q) k_{0} u\right\}=0 \tag{8}
\end{align*}
$$

for $(y, t) \in[0,1] \times[0, T]$, where $c(y, t):=\beta(y s(r), r)$. We let $a(t)=\dot{s}(t) / s(t), d(t)=1 /\left(k_{0} s(t)\right)^{2}$,

$$
f:=q\left[u_{t}-y \frac{\dot{s}(t)}{s(t)} u_{y}\right]-\mathrm{i}(p-q) k_{0} u
$$

and consider the following ibvp for (8)

$$
\begin{align*}
& u_{t}-y a(t) u_{y}+c(y, t) f+d(t) f_{y y}=F(y, t) \\
& 0 \leq t \leq T, \quad 0 \leq y \leq 1 \\
& u(y, 0)=u_{0}(y)=v_{0}(y s(0)), \quad 0 \leq y \leq 1 \tag{9}\\
& u(0, t)=u(1, t)=0, \quad 0 \leq t \leq T
\end{align*}
$$

where we added a nonhomogeneous term, $F(y, t)$, for greater generality. We append to (9) an extra bottom boundary condition that will imply

$$
\begin{equation*}
\operatorname{Im}\left\{f_{y}(1, t) \overline{f(1, t)}\right\}=0, \quad 0 \leq t \leq T \tag{10}
\end{equation*}
$$

Observe that (10) is the form that (4) takes after the horizontal transformation. By Proposition 2.1, if $c(y, t)$ and q are real, and $F=0$ the ibvp (9)-(10) is $L^{2}-$ conservative in the z, r variables, i.e. in the sense that

$$
\sqrt{s(t)}\|u(\cdot, t)\|=\sqrt{s(0)}\left\|u_{0}\right\|
$$

where $\|\cdot\|$ denotes now the L^{2} norm on $[0,1]$.
There are many boundary conditions that imply (10), for example

$$
f_{y}(1, t)=\lambda(t) f(1, t) \quad \text { or } \quad f(1, t)=\mu(t) f_{y}(1, t)
$$

where λ, μ are real functions. The second class includes the simple condition $f(1, t)=0$. We chose to study numerically the ibvp

$$
\begin{align*}
& u_{t}-y a(t) u_{y}+c(y, t) f+d(t) f_{y y}=F(y, t) \\
& 0 \leq t \leq T, \quad 0 \leq y \leq 1 \\
& u(y, 0)=u_{0}(y), \quad 0 \leq y \leq 1 \tag{11}\\
& u(0, t)=u(1, t)=0, \quad 0 \leq t \leq T \\
& f(1, t)=\gamma(t) \dot{s}(t) f_{y}(1, t)+m(t), \quad 0 \leq t \leq T
\end{align*}
$$

where $\gamma(t)$ is a real and $m(t)$ a complex function. Note that we added a nonhomogeneous term $m(t)$ for greater generality and use the term \dot{s} in $\mu=\gamma \dot{s}$ in order to study the influence of the bottom geometry in the computations. In what follows we will define a simple finite difference scheme of Crank-Nicolson type for (11) and solve the problem numerically in artificial and realistic domains.

We define a uniform partition of the interval $[0, T]$ with step $k:=T / N$, nodes $t^{n}:=n k, n=0, \ldots, N$, and intermediate nodes $t^{*}:=t^{n}+\frac{k}{2}, n=0, \ldots, N-1$. We let also $h:=1 /(J+1)$ and consider a uniform partition of the interval $[0,1]$ with nodes $y_{j}:=j h, j=0, \ldots, J+1$. We let U_{j}^{n} be the approximation to $u\left(y_{j}, t^{n}\right)$ defined by the scheme:
Step 1. Set $U_{j}^{0}=u_{0}\left(y_{j}\right)$ for $1 \leq j \leq J, U_{0}^{0}=U_{J+1}^{0}=0$. Step 2. For $n=1, \ldots, N-1$, compute $U_{j}^{n+1}, 0 \leq j \leq$ $J+1$, such that

$$
\begin{aligned}
& \frac{U_{j}^{n+1}-U_{j}^{n}}{k}-y_{j} a\left(t^{*}\right) \frac{U_{j+1}^{n+\frac{1}{2}}-U_{j-1}^{n+\frac{1}{2}}}{2 h}+c\left(y_{j}, t^{*}\right) f_{j}^{n} \\
& \quad+d\left(t^{*}\right) \Delta f_{j}^{n}=F\left(y_{j}, t^{*}\right), \quad 1 \leq j \leq J
\end{aligned} \quad \begin{aligned}
& U_{0}^{n+1}=U_{J+1}^{n+1}=0
\end{aligned}
$$

Acoustics 08 Paris

where $U_{j}^{n+\frac{1}{2}}=\left(U_{j}^{n}+U_{j}^{n+1}\right) / 2$ for $j=0, \ldots, J+1$, and

$$
\begin{aligned}
\Delta f_{j}^{n} & :=\frac{f_{j+1}^{n}-2 f_{j}^{n}+f_{j-1}^{n}}{h^{2}}, \quad 1 \leq j \leq J-1 \\
\Delta f_{J}^{n} & :=\frac{c_{1} f_{J-1}^{n}-c_{2} f_{J}^{n}}{h^{2}}-\frac{2 m\left(t^{*}\right)}{h\left(3 \gamma\left(t^{*}\right) \dot{s}\left(t^{*}\right)-2 h\right)}
\end{aligned}
$$

with c_{1} and c_{2} defined by

$$
c_{1}=\frac{2\left(\gamma\left(t^{*}\right) \dot{s}\left(t^{*}\right)-h\right)}{3 \gamma\left(t^{*}\right) \dot{s}\left(t^{*}\right)-2 h}, \quad c_{2}=\frac{2\left(\gamma\left(t^{*}\right) \dot{s}\left(t^{*}\right)-2 h\right)}{3 \gamma\left(t^{*}\right) \dot{s}\left(t^{*}\right)-2 h}
$$

and where

$$
\begin{aligned}
f_{j}^{n}: & =q\left(\frac{U_{j}^{n+1}-U_{j}^{n}}{k}-y_{j} \frac{\dot{s}\left(t^{*}\right)}{s\left(t^{*}\right)}\left(\frac{U_{j+1}^{n+\frac{1}{2}}-U_{j-1}^{n+\frac{1}{2}}}{2 h}\right)\right) \\
& -\mathrm{i}(p-q) k_{0} U_{j}^{n+\frac{1}{2}}, \quad 1 \leq j \leq J
\end{aligned}
$$

and $f_{0}^{n}:=0$. This scheme requires solving a pentadiagonal system of linear equations for each n, and can be proved to be L^{2}-stable and of order of accuracy $O\left(h^{2}+\right.$ k^{2}) when q, c are real, and $\gamma(t)=m(t)=0$ (i.e. in the case $f(1, t)=0)$.

4 Numerical experiments

We considered the problem (11) with $k_{0}=0.1, q=1 / 4$, $p=3 / 4$, and $c(y, t)=1+y$. We took as its exact solution the function $u_{\mathrm{ex}}(y, t)=y^{2}(y-1) \exp (2 t)$ for a suitable F and $u_{0}(y)=u_{\text {ex }}(y, 0)$. The exact solution $u_{\text {ex }}(y, t)$ satisfies $f(1, t)=(\dot{s})^{2}+m(t)$ for suitable m (i.e. $\gamma(t)=\dot{s}(t)$), and $u_{\mathrm{ex}}=0$ at $y=0$ and $y=1$. We ran our code for the following bottom cases on $[0, T]$:

- Case 1: $s(t)=-t+2 . \dot{s}(t)=-1<0$.
- Case 2: $s(t)=t+2 . \dot{s}(t)=1>0$.
- Case 3: $s(t)=\exp (-t) . \dot{s}(t)=-\exp (-t)<0$.
- Case 4: $s(t)=\exp (t) . \dot{s}(t)=\exp (t)>0$.
- Case 5: $s(t)=t^{2}+2 t+1 . \dot{s}(t)=2 t+2>0$.
- Case 6: $s(t)=\cos (2 \pi t)+2 . \dot{s}(t)=-(2 \pi) \sin (2 \pi t)$. Thus, $\dot{s}(t)<0$ for $0<t<0.5$, and $\dot{s}(t)>0$ for $0.5<t<1$.

For all cases we obtained experimentally second-order accuracy $O\left(k^{2}+h^{2}\right)$ in the discrete L^{2}-norm $\left\|U^{n}\right\|:=$ $\left(h \sum_{j=1}^{J}\left|U_{j}^{n}\right|^{2}\right)^{1 / 2}$, and in order to check the degree of conservativity of the numerical scheme, we computed in each case the discrete weighted L^{2} norm $\left\|U^{n}\right\|_{*}=$ $\left(s\left(t^{n}\right) h \sum_{j=1}^{J}\left|U_{j}^{n}\right|^{2}\right)^{1 / 2}$ in the case of the homogeneous problem ($F=m=0$) with the same initial data as above. The results for $N=J=1280$ appear in Fig. 1. We observe that the finite difference scheme is practically L^{2}-conservative in the cases 2,4 , and 5 (i.e. in the downsloping cases) and loses conservativity in the upsloping cases 1 and 3 . This behavior may also be seen in the periodic case 6 .

We also ran our code in the case of the standard ASA wedge test case [5] and $m=F=0$ and for various functions $\gamma(t)$, taking the complex Padé coefficient $q=(0.252252311,-1.35135138 \mathrm{e}-02)$. A normal-mode

Figure 1: Discrete weighted L^{2}-norm $\left\|U^{n}\right\|_{*}$ for various bottom cases as a function of t^{n} - Problem (11) with $\gamma=\dot{s}, F=m=0$.

Figure 2: Transmission loss at a receiver depth of 30 m when $\gamma(t)=1$.
starter (6 modes) source (cf. [2], [3]) of frequency $f=$ 25 Hz was placed at a depth of 100 m . We took the sound speed constant and equal to $1500 \mathrm{~m} / \mathrm{sec}$ and no attenuation (thus, $\operatorname{Im}(\beta)=0$), calculated the transmission loss $\left(-20 \log _{10}(|v(z, r)| / \sqrt{r})\right.$ at a receiver depth of 30 m , and compared our results to which we will refer to as FD- γ for better clarity, with the results of the code implementing the same problem with the extra bottom condition

$$
u_{y y}(1, t)=2 \mathrm{i} k_{0} s(t) \dot{s}(t) u_{y}(1, t), \quad t \geq 0
$$

of Refs. [2] and [3] (called in the sequel DSZ condition) for the following three bottom profiles (all distances expressed in meters):

$$
\begin{array}{ll}
s(r)=200(1-r / 4000), & \text { (upsloping) } \\
s(r)=200, & \text { (horizontal) } \\
s(r)=200(1+r / 4000), & \text { (downsloping) }
\end{array}
$$

taking, in each case, $\gamma(t)=1, \gamma(t)=\dot{s}(t)$ and $\gamma(t)=0$. The results are shown in Figs. 2-4 in the z and r variables. Note that in the upsloping cases, we also compare our results with those of COUPLE [6], and in the

Figure 3: Transmission loss at a receiver depth of 30 m when $\gamma(t)=\dot{s}(t)$.
downsloping cases with those of a wide-angle parabolic equation based code with staircase bottom discretization.

In the case $\gamma(t)=1$ (Fig. 2) we have good agreement only in the horizontal bottom case, i.e. when $f=0$. In the sloping bottom cases the results do not agree. In the case $\gamma(t)=\dot{s}(t)$ (Fig. 3), the results are much better (in this case the coefficient $\gamma(t) \dot{s}(t)=\dot{s}^{2}(t)$ is very small) and are practically the same with the results corresponding to $\gamma(t)=0$ (Fig. 4). Notice that when $\gamma(t)=0$ the extra boundary condition in (11) becomes $f(1, t)=0$ which implies that $u_{y}(1, t)=0$ (or, equivalently, $v_{r}(s(r), r)=0$ in the variable domain) when we take into account $u(1, t)=0$. We conclude therefore that when the term $\gamma(t) \dot{s}(t)$ is small, the present model gives accurate simulations of the sound field in these variable bottom domains.

Acknowledgment

This work was supported by a France-Greece scientific cooperation grant for the period 2006-2008, funded by the General Secretariat of Research and Technology,

Figure 4: Transmission loss at a receiver depth of 30 m when $\gamma(t)=0$.

Greece, and EGIDE, France.

References

[1] G. D. Akrivis, V. A. Dougalis, G. E. Zouraris, "Error estimates for finite difference methods for a wide-angle 'parabolic' equation", SIAM J. Numer. Anal. 33(6), 2488-2509 (1996).
[2] V. A. Dougalis, F. Sturm, G. E. Zouraris, "Boundary Conditions for the Wide-Angle PE at a Sloping Bottom", Proceedings of the 8th European Conference on Underwater Acoustics (Carvoeiro, Portugal, 12-15 June 2006), edited by S. M. Jesus and O. C. Rodriguez (ISBN 989-95068-0-X), Vol. 1, 5156 (2006).
[3] V. A. Dougalis, F. Sturm, G. E. Zouraris, "On an initial-boundary value problem for a Wide-Angle Equation in a waveguide with a variable bottom", Submitted.
[4] O. A. Godin, "Reciprocity and energy conservation within the parabolic equation", Wave Motion 29, 175-194 (1999).
[5] F. B. Jensen, C. M. Ferla, "Numerical solutions of range-dependent benchmark problems in ocean acoustics", J. Acoust. Soc. Am. 87(4), 1499-1510 (1990).
[6] R. B. Evans, "A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom", J. Acoust. Soc. Am. 74, 188-195 (1983).

