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We consider the third-order, wide-angle Parabolic Equation (PE) in the context of Underwater Acoustics
in a cylindrically symmetric medium consisting of water over a soft bottom of variable geometry. The
initial-boundary-value problem for this equation with just a homogeneous Dirichlet bottom boundary
condition may not be well-posed, for example when the bottom is downsloping. In previous work
we proposed an additional boundary condition that, together with the zero-field condition on the
bottom, yields a well-posed problem. Here, we continue our investigation of additional bottom boundary
conditions that yield well-posed, physically correct problems. Motivated by the fact that the solution of
the wide-angle PE in a domain with horizontal layers conserves its L2 norm in the absence of attenuation,
we identify additional boundary conditions that yield L2-conservative solutions of the problem. After
a range-dependent change of the depth variable that makes the bottom horizontal, we discretize the
continuous problems by Crank-Nicolson type finite difference schemes, and show, by means of numerical
experiment, that some of the new models yield accurate simulations of the acoustic field in standard,
wedge-type domains with upsloping and downsloping bottoms.

1 Introduction

We consider the third-order, Claerbout-type wide-angle
parabolic equation (PE) of underwater acoustics in a
cylindrically symmetric medium[

1 + qβ +
q

k2
0

∂2
z

]
vr = i(p− q)k0

[ 1
k2
0

vzz + βv
]

(1)

for (z, r) ∈ [0, s(r)]×[0, T ], where v = v(z, r), a complex-
valued function of the depth z and range r, is the acous-
tic field generated by a time-harmonic point source of
frequency f , k0 is a reference wave number, p, q are
complex constants such that p = q + 1/2 and β(z, r) is
a complex-valued function. The problem is posed on a
single-layer domain with a variable bottom described by
the positive smooth function z = s(r). We supplement
(1) by an initial condition modelling the sound source
at r = 0, and a pressure-release boundary condition on
the surface z = 0, i.e. we require that

v(z, 0) = v0(z), 0 ≤ z ≤ s(0),

v(0, r) = 0, 0 ≤ r ≤ T,
(2)

where v0 is a given function. We also supplement (1) by
the homogeneous Dirichlet bottom boundary condition

v(s(r), r) = 0, 0 ≤ r ≤ T. (3)

There is a simple numerical and theoretical evidence
(see for instance in Refs. [2], [3], [4]) that the initial-
boundary-value problem (ibvp) (1)–(3) may not be well-
posed, for example if the bottom is downsloping. In
Refs. [2] and [3] an additional boundary condition was
proposed that together with (1)–(3) yields a well-posed
problem. In this note, motivated by the fact that solu-
tions of (1)–(3) conserve the L2 norm, i.e. satisfy

‖v(·, r)‖ = ‖v0‖ for r ≥ 0,

where ‖v(·, r)‖ := (
∫ s(r)

0
|v(z, r)|2dz)1/2, in domains with

a horizontal bottom when β and q are real, we seek addi-
tional boundary conditions that will render the problem
well-posed and L2-conservative (when β and q are real)
even in the presence of variable bottom. We prove that
the problem (1)–(3) is L2-conservative if and only if the
additional bottom boundary condition is chosen such
that

Im
{
gz(s(r), r) g(s(r), r)

}
= 0, 0 ≤ r ≤ T, (4)

where the function g is defined by

g := qvr − i(p− q)k0v.

We then choose some specific boundary conditions that
satisfy (4) and solve numerically the resulting ibvp by a
finite difference scheme, after a range-dependent change
of the depth variable that renders the bottom horizon-
tal. We study the accuracy, stability, and conservation
properties of this scheme in a series of numerical exper-
iments and use it to simulate the acoustic field in stan-
dard wedge-type domains with upsloping and downslop-
ing bottoms.

2 L2 and H1 estimates for various
bottom boundary conditions

In the sequel we shall call an ibvp (e.g. the ibvp (1)–(3))
X-stable (where X is a normed linear space of functions
of z) if ‖v(·, r)‖X ≤ C‖v0‖X for 0 ≤ r ≤ T and some
constant C independent of v0. In the upsloping case we
have

Proposition 2.1 If β, q are real, and ṡ(r) ≤ 0, r ∈
[0, T ], then the ibvp (1), (2), (4) is L2-stable.

For general bottom profiles, we have

Proposition 2.2 If β and q are real, then the ibvp (1)–
(3) is L2-conservative, if and only if (4) holds.

First, observe that (1) may be written as

vr + βg +
1
k2
0

gzz = 0. (5)

The proof of the results given in Propositions 2.1 and
2.2 can be easily achieved by multiplying (5) with g(z, r)
and integrating over 0 ≤ z ≤ s(r). Integrating by parts,
taking imaginary parts, and using the fact that g(0, r) =
0 we arrive at

d
dr

(∫ s(r)

0

|v(z, r)|2dz
)

= ṡ(r) |v(s(r), r)|2

− 2
(p− q)k3

0

Im
{
gz(s(r), r) g(s(r), r)

}
,

where a dot denotes differentiation with respect to r.
Hence, using (3),

‖v(·, r)‖2 − ‖v0‖2 =

− 2
(p− q)k3

0

∫ s(r)

0

Im
{
gz(s(τ), τ) g(s(τ), τ)

}
dτ,

(6)
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from which the propositions follow.
The following result concerns the H1-stability of the

problem (1)–(2) under various bottom boundary condi-
tions.

Proposition 2.3 The solution of the problem (1)–(2)
is H1-stable provided the following holds:

(i) For 0 ≤ r ≤ T , ṡ(r)|vz(s(r), r)|2 ≤ 0 and

Re{gz(s(r), r) v(s(r), r)} = 0.
(ii) β, q 6= 0 are real, and k0maxr∈[0,T ]s(r) is suffi-

ciently small.

In order to prove this result we multiply (1) by v(z, r)
and integrate over 0 ≤ z ≤ s(r). Taking real parts we
see that

d
dr

(∫ s(r)

0

[
|vz|2 −

k2
0

q
(1 + qβ) |v|2

]
dz
)

=

−k
2
0

q

∫ s(r)

0

∂r(1 + qβ) |v|2dz + ṡ(r)|vz(s(r), r)|2

−ṡ(r)k
2
0

q

(
1 + qβ(s(r), r)

)
|v(s(r), r)|2

+
2
q

Re{gz(s(r), r) v(s(r), r)}.

(7)

Using now Poincaré’s inequality, integrating over r and
using the fact that

1− C
(k2

0

q
max
z,r
|1 + qβ|

)
> 0

for some positive constant C (this follows from (ii)), we
arrive at the H1 estimate

‖vz(·, r)‖ ≤ C ′‖vz(·, 0)‖.

Under the hypotheses of Proposition 2.3 we conclude
therefore that

1. The ibvp (1)–(3) is H1-stable, if the bottom is
upsloping (ṡ ≤ 0).

2. We observe that (3) and the condition g(s(r), r) =
0 gives vr(s(r), r) = 0, hence

vz(s(r), r) = 0.

Thus the ibvp (1)–(3) with the extra condition
g(s(r), r) = 0 is L2-conservative and H1-stable for
any bottom profile.

3. The ibvp (1), (2) with the bottom boundary condi-
tion gz(s(r), r) = 0 is L2- and H1-stable, provided
the bottom is upsloping (ṡ ≤ 0).

3 Finite difference schemes

If we perform the transformation y = z/s(r), t = r,
u(y, t) := v(z, r) we see that (1) becomes

ut − y
ṡ(t)
s(t)

uy + c(y, t)
{
q
[
ut − y

ṡ(t)
s(t)

uy

]
− i(p− q)k0u

}
+

1
k2
0s

2(t)
∂2

y

{
q
[
ut − y

ṡ(t)
s(t)

uy

]
− i(p− q)k0u

}
= 0

(8)

for (y, t) ∈ [0, 1]× [0, T ], where c(y, t) := β(ys(r), r). We
let a(t) = ṡ(t)/s(t), d(t) = 1/(k0s(t))2,

f := q
[
ut − y

ṡ(t)
s(t)

uy

]
− i(p− q)k0u,

and consider the following ibvp for (8)

ut − ya(t)uy + c(y, t)f + d(t)fyy = F (y, t),

0 ≤ t ≤ T, 0 ≤ y ≤ 1,

u(y, 0) = u0(y) = v0(ys(0)), 0 ≤ y ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

(9)

where we added a nonhomogeneous term, F (y, t), for
greater generality. We append to (9) an extra bottom
boundary condition that will imply

Im
{
fy(1, t) f(1, t)

}
= 0, 0 ≤ t ≤ T. (10)

Observe that (10) is the form that (4) takes after the
horizontal transformation. By Proposition 2.1, if c(y, t)
and q are real, and F = 0 the ibvp (9)–(10) is L2-
conservative in the z, r variables, i.e. in the sense that√

s(t) ‖u(·, t)‖ =
√
s(0) ‖u0‖,

where ‖ · ‖ denotes now the L2 norm on [0, 1].
There are many boundary conditions that imply (10),

for example

fy(1, t) = λ(t)f(1, t) or f(1, t) = µ(t)fy(1, t)

where λ, µ are real functions. The second class includes
the simple condition f(1, t) = 0. We chose to study
numerically the ibvp

ut − ya(t)uy + c(y, t)f + d(t)fyy = F (y, t),

0 ≤ t ≤ T, 0 ≤ y ≤ 1,

u(y, 0) = u0(y), 0 ≤ y ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T,

f(1, t) = γ(t)ṡ(t)fy(1, t) +m(t), 0 ≤ t ≤ T,

(11)

where γ(t) is a real and m(t) a complex function. Note
that we added a nonhomogeneous term m(t) for greater
generality and use the term ṡ in µ = γṡ in order to
study the influence of the bottom geometry in the com-
putations. In what follows we will define a simple finite
difference scheme of Crank-Nicolson type for (11) and
solve the problem numerically in artificial and realistic
domains.

We define a uniform partition of the interval [0, T ]
with step k := T/N , nodes tn := nk, n = 0, . . . , N , and
intermediate nodes t∗ := tn+ k

2 , n = 0, . . . , N−1. We let
also h := 1/(J + 1) and consider a uniform partition of
the interval [0, 1] with nodes yj := jh, j = 0, . . . , J + 1.
We let Un

j be the approximation to u(yj , t
n) defined by

the scheme:
Step 1. Set U0

j = u0(yj) for 1 ≤ j ≤ J , U0
0 = U0

J+1 = 0.
Step 2. For n = 1, . . . , N − 1, compute Un+1

j , 0 ≤ j ≤
J + 1, such that

Un+1
j − Un

j

k
− yj a(t∗)

U
n+ 1

2
j+1 − U

n+ 1
2

j−1

2h
+ c(yj , t

∗)fn
j

+d(t∗)∆fn
j = F (yj , t

∗), 1 ≤ j ≤ J,

Un+1
0 = Un+1

J+1 = 0,
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where Un+ 1
2

j = (Un
j +Un+1

j )/2 for j = 0, . . . , J + 1, and

∆fn
j :=

fn
j+1 − 2fn

j + fn
j−1

h2
, 1 ≤ j ≤ J − 1,

∆fn
J :=

c1f
n
J−1 − c2fn

J

h2
− 2m(t∗)
h(3γ(t∗)ṡ(t∗)− 2h)

,

with c1 and c2 defined by

c1 =
2(γ(t∗)ṡ(t∗)− h)
3γ(t∗)ṡ(t∗)− 2h

, c2 =
2(γ(t∗)ṡ(t∗)− 2h)
3γ(t∗)ṡ(t∗)− 2h

,

and where

fn
j := q

(Un+1
j − Un

j

k
− yj

ṡ(t∗)
s(t∗)

(Un+ 1
2

j+1 − U
n+ 1

2
j−1

2h
))

−i(p− q)k0U
n+ 1

2
j , 1 ≤ j ≤ J,

and fn
0 := 0. This scheme requires solving a pentadiag-

onal system of linear equations for each n, and can be
proved to be L2-stable and of order of accuracy O(h2 +
k2) when q, c are real, and γ(t) = m(t) = 0 (i.e. in the
case f(1, t) = 0).

4 Numerical experiments

We considered the problem (11) with k0 = 0.1, q = 1/4,
p = 3/4, and c(y, t) = 1 + y. We took as its exact
solution the function uex(y, t) = y2(y − 1) exp(2t) for a
suitable F and u0(y) = uex(y, 0). The exact solution
uex(y, t) satisfies f(1, t) = (ṡ)2 + m(t) for suitable m
(i.e. γ(t) = ṡ(t)), and uex = 0 at y = 0 and y = 1. We
ran our code for the following bottom cases on [0, T ]:

• Case 1: s(t) = −t+ 2. ṡ(t) = −1 < 0.

• Case 2: s(t) = t+ 2. ṡ(t) = 1 > 0.

• Case 3: s(t) = exp(−t). ṡ(t) = − exp(−t) < 0.

• Case 4: s(t) = exp(t). ṡ(t) = exp(t) > 0.

• Case 5: s(t) = t2 + 2t+ 1. ṡ(t) = 2t+ 2 > 0.

• Case 6: s(t) = cos(2πt)+2. ṡ(t) = −(2π) sin(2πt).
Thus, ṡ(t) < 0 for 0 < t < 0.5, and ṡ(t) > 0 for
0.5 < t < 1.

For all cases we obtained experimentally second-order
accuracy O(k2 + h2) in the discrete L2-norm ‖Un‖ :=
(h
∑J

j=1 |Un
j |2)1/2, and in order to check the degree of

conservativity of the numerical scheme, we computed
in each case the discrete weighted L2 norm ‖Un‖∗ =
(s(tn)h

∑J
j=1 |Un

j |2)1/2 in the case of the homogeneous
problem (F = m = 0) with the same initial data as
above. The results for N = J = 1280 appear in Fig. 1.
We observe that the finite difference scheme is practi-
cally L2-conservative in the cases 2, 4, and 5 (i.e. in the
downsloping cases) and loses conservativity in the up-
sloping cases 1 and 3. This behavior may also be seen
in the periodic case 6.

We also ran our code in the case of the standard
ASA wedge test case [5] and m = F = 0 and for vari-
ous functions γ(t), taking the complex Padé coefficient
q = (0.252252311,−1.35135138e− 02). A normal-mode

Figure 1: Discrete weighted L2-norm ‖Un‖∗ for various
bottom cases as a function of tn - Problem (11) with

γ = ṡ, F = m = 0.
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Figure 2: Transmission loss at a receiver depth of 30 m
when γ(t) = 1.

starter (6 modes) source (cf. [2], [3]) of frequency f =
25 Hz was placed at a depth of 100 m. We took the
sound speed constant and equal to 1500 m/sec and no
attenuation (thus, Im(β) = 0), calculated the transmis-
sion loss (−20 log10(|v(z, r)|/

√
r) at a receiver depth of

30 m, and compared our results to which we will refer to
as FD-γ for better clarity, with the results of the code
implementing the same problem with the extra bottom
condition

uyy(1, t) = 2ik0s(t)ṡ(t)uy(1, t), t ≥ 0,

of Refs. [2] and [3] (called in the sequel DSZ condition)
for the following three bottom profiles (all distances ex-
pressed in meters):

s(r) = 200(1− r/4000), (upsloping)

s(r) = 200, (horizontal)

s(r) = 200(1 + r/4000), (downsloping)

taking, in each case, γ(t) = 1, γ(t) = ṡ(t) and γ(t) = 0.
The results are shown in Figs. 2–4 in the z and r vari-
ables. Note that in the upsloping cases, we also com-
pare our results with those of COUPLE [6], and in the

Figure 3: Transmission loss at a receiver depth of 30 m
when γ(t) = ṡ(t).

downsloping cases with those of a wide-angle parabolic
equation based code with staircase bottom discretiza-
tion.

In the case γ(t) = 1 (Fig. 2) we have good agreement
only in the horizontal bottom case, i.e. when f = 0.
In the sloping bottom cases the results do not agree.
In the case γ(t) = ṡ(t) (Fig. 3), the results are much
better (in this case the coefficient γ(t)ṡ(t) = ṡ2(t) is
very small) and are practically the same with the results
corresponding to γ(t) = 0 (Fig. 4). Notice that when
γ(t) = 0 the extra boundary condition in (11) becomes
f(1, t) = 0 which implies that uy(1, t) = 0 (or, equiva-
lently, vr(s(r), r) = 0 in the variable domain) when we
take into account u(1, t) = 0. We conclude therefore
that when the term γ(t)ṡ(t) is small, the present model
gives accurate simulations of the sound field in these
variable bottom domains.
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Figure 4: Transmission loss at a receiver depth of 30 m
when γ(t) = 0.
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