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When resurveying a geographic area of the seafloor during sidescan change detection operations, an automated 
method to match bottom objects imaged previously with objects imaged in the resurvey can increase efficiency.  
The geographic position of a new object relative to a historical object is a good indicator of a match.  However, 
due to position error within the survey, there may be more than one spatially-close object in the new imagery.  
To complicate matters further, the reflected energy from the new object may be vastly different given a different 
resurvey incidence angle or the partial burial of the object.  In addition, the resurveyed object image may be 
below the threshold set for automatic recognition and falsely eliminated.  This presentation will address these 
problems and suggest possible methods for matching "constellations" of bottom objects using Dijkstra's 
Minimum Cost - Maximum Flow algorithm, control point matching, and the data association procedure.  

1 Introduction 

When sidescan surveys are updated with new imagery from 
a previously scanned area, the surveyors are interested in 
both the changes between the two surveys and aligning 
reference points. Our goal is to automate the change 
detection process, where possible, and aid the surveyor’s 
decision making when automation is not applicable. The 
challenges to overcome include position errors internal to 
each survey, errors between surveys, sidescan imagery 
resolution, transient targets, and the movement of bottom 
objects. 
Position errors for sidescan surveys have many sources. 
With the advent of widespread high quality GPS navigation 
instruments, errors in determining the position of the 
towing platform can range from one to five meters. Errors 
occur due to inexact sound speed estimates for tow body 
height and target slant range, as well as errors associated 
with the tow body’s attitude [1]. Position errors due to cable 
layback and slew tend to be the largest contribution to 
position error and can be in the tens of meters during 
normal operations [2]. Some surveyors greatly reduce the 
cable sourced errors by using acoustic transponders; 
however, very few baseline surveys have been collected 
using transponders, and it is unlikely most new surveys will 
either.  This implies that an automatic change detection 
system must be able to handle position errors of up to thirty 
meters.  
 

 
 

Figure 1. Illustration of some causes of position error. 
 

Transient items must be deleted, after determining they are 
no longer in the survey, without eliminating objects that 
may have been randomly skipped by a new survey. Bottom 
objects move due to currents and storms, and changing 
burial percentage makes inter-survey comparison of objects 
more difficult. Resurveys also can use different sidescan 
sensors between surveys, creating resolution and image-
matching problems. 
Here we will use “Feature Matching” to best match objects 
individually and “Area Matching” when there is great 
enough ambiguity between potential matches. 
 

2 Algorithms 

2.1 Automatic Target recognition 

A real-time detection algorithm, developed by the authors, 
ingests one scan line at a time to locate targets within 
sidescan imagery.  Due to real-time processing 
considerations, the authors’ algorithm relies on a patented 
geospatial bitmap GB technique [3].  Across-track bright 
and shadow positions, lengths, and intensity information are 
immediately gathered from the scan line and stored in two 
one-dimensional GBs: one each for shadows and brights.  A 
circular lookup table is created to “window” the imagery 
several scan lines at a time.  This lookup table is the same 
width as the GBs and is populated with the positions and 
run-lengths of shadows and brights stored in the GBs.  The 
window is used to make the final detection decision.   
 
Shadows and brights in a scan line are located by first 
adaptively obtaining a lower intensity threshold, imin, such 
that all samples of intensity less than imin are considered 
shadows.  An upper intensity threshold, imax, is set such that 
all samples of intensity above imax are considered brights.  
An appropriate gamma shift converts image intensities to fit 
a normal distribution, such that imin and imax are set to the 
quartiles of the shifted (normal) distribution.  After imin and 
imax have been determined for scan lines with maximum 
intensity value > 128, the port and starboard halves of the 
scan lines are processed separately.  Each half of the scan 
line can be represented by a vector, X, of length N.  The 
following method is used to process shadows and brights 
for the starboard side; the port side is processed similarly. 
 
Two GBs of size 1xN are created, one for shadows and one 
for brights.  A different gamma adjustment, γ, based on an 
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error approximation of the side-scan sonar parameters, is 
computed for position x within X, as shown in (1). 
 
 γ = e –β x / N (1) 
 
β is based on the sonar parameters, such as time-varying 
gain.  As β approaches infinity, the gamma correction 
approaches 0 over a greater range of X (Figure 2), and 
therefore has less affect on intensity thresholds. 

The bright and shadow thresholds Imin(x) and Imax(x) are 
defined in (2) and (3).  All pixels with intensity values 
above Imax(x) are considered brights, while all with 
intensities below Imin(x) are considered shadows, and the 
corresponding bits in the bright and shadow GBs are set, as 
shown in Figure 3. 

 
 Imin(x) = imin(1- γ) (2) 
 Imax(x) = imax(1+ γ) (3) 
 
 

 
Figure 2.  Gamma as a function of β. 

 
 

 
Figure 3. GBs facilitate computer-aided detection of objects 

in SSI.  
 Each row of bits in both GBs corresponds to a single scan 

line in the image.  All pixels in the image with intensity 
greater than upper threshold Imax are considered “brights” 

and the appropriate bits in the bright GB are set.  Likewise, 
all pixels in the image with intensity less than lower 

threshold Imin are considered “shadows” and the appropriate 
bits in the shadow GB are set. 

 

Figure 4 illustrates how the intensity thresholds vary over x 
for a given γ.  For example, the closer a pixel is to the 
center of the scan, known as nadir (x = 0), the greater its 
intensity must be to be detected as a bright [4], and the 
lower its intensity must be to be detected as a shadow.  It is 
interesting to note that the two threshold curves do not 
diverge from their respective asymptotes (imin and imax) at 
the same rate as they approach nadir.  This is by design, 
because shadows are more detectable than brights in SSI [5] 
– [8].  In other words, a single shadow threshold value (imin) 
suffices for more values of x than a single bright threshold 
value (imax). 
 

 
Figure 4.  Intensity thresholds for brights and shadows. 

 

Targets of various shapes and sizes are traditionally 
discerned in sidescan by the shadow’s dimensions, which 
vary as a function of both beam angle and feature size [9].  
An adaptive filter is used to “complete” the target’s bright 
spot, reducing or enlarging it based on the shadow.  The 
feature then can be classified more accurately using 
dimensions of both the shadow and completed bright spot.  
The filter outputs a snippet of imagery that contains only 
three gray-scale values: black for shadow bits, white for 
completed bright spot bits, and gray for all other bits (figure 
5).  These completed shapes are used by a feature-matching 
algorithm to match historical survey targets with new 
targets.  
 

 
Figure 5.  A target’s bright spot is “completed”, based on its 

shadow. 
In the series on the left,  the bright spot is enlarged to match 

the shadow.  On the right, the bright spot is reduced. 
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2.2 Feature Matching 

The actual matching process starts when the ACDC system 
has detected a contact. Most surveys will overlap their 
sidescan swaths so each bathymetry point is imaged twice 
from opposite headings. Even if there are swath position 
errors, this overlap helps ensure all points will be seen. 
Imaging potential objects on opposite headings makes it 
more likely to identify objects that may be partially buried. 
 
The highest probability weight is assigned to the position 
match between the object and the previously surveyed 
object, since in most cases, there will be only one previous 
survey object in the area. Next, the objects’ sizes are 
calculated and compared. Adequate latitude (150%) is 
allowed here so that images with differing views will not 
automatically rule out a potential object match. If the match 
is sufficient, it is marked and the contact is amended to 
include the new image. If the contact has only one possible 
match, and the match is not strong enough to automatically 
flag (or not weak enough to automatically ignore), the 
contact is sent to the surveyor to match. Otherwise, the 
image is forwarded to the area matching routine. 

2.3 Area Matching 

Area matching is the process of examining the positions of 
surrounding objects and using their geometric relationships 
to identify objects as those previously seen. Complications 
to this process include: some objects in both the previous 
and new surveys may be transients, some objects will have 
moved, and some objects may have not been identified in 
one or the other survey. 
Various algorithms were considered to help solve the area 
matching problem. Neural Networks are commonly applied 
to pattern matching problems. They are flexible and easily 
applied. Their weakness lies in their training patterns, 
which are slow to evolve and challenging to tune to not 
over- or under-match. For these reasons we rejected Neural 
Networks. 
We first tried Dijkstra's Minimum Cost - Maximum Flow 
algorithm for the area-matching problem. This method 
treats each point and its potential matches as nodes on a 
directed graph, with the object being evaluated as the root 
node. Probabilities of match are assigned to each node 
edge. The highest probability node geometry is selected and 
compared to the node geometry in the previous survey. 
Dykstra’s algorithm is a method to efficiently solve these 
nodes.  After preliminary work, we found that the graphs 
very rarely needed tree graphs with more than one 
connected node. All such graphs would reduce into the 
feature matching case. The algorithm was set aside because, 
in most cases, it did not improve the match. 
Rigid Data Association (RDA) has been used to improve 
navigation for Autonomous Underwater Vehicles (AUVs) 
[10].  Typical AUV navigation systems get a GPS fix at the 
surface and use an Inertial Navigation System to estimate 
movement through the water and a Doppler Velocity Log to 
track movement over the sea floor, when applicable. These 
systems can bring swath-to-swath position errors down to 5 

meters or less by assuming there is a correction 
transformation for each swath with constant position, 
heading, and velocity errors. This rigid transformation can 
be calculated by finding the position error between two or 
more objects imaged in both swaths. Each pair of potential 
matches creates a transform. These transforms are searched 
to find the one that causes the least overall match error. 
Using this transform, the position of all objects can be 
adjusted and then the closest object from the previous leg is 
chosen as the match for each object. 
Rigid Data Association is ideal for area matching when 
using only a “lawn mower” pattern survey with low 
position errors.  However,   when change detecting between 
different surveys, when a lawn mower pattern is not used, 
and when non-constant current fields are present, RDAs 
applicability breaks down. In future work we plan to use it 
when it can be automatically recognized as applicable. 
The final method we examined for area matching during 
change detection is Control Point Matching (CPM) [11].  
This method simplifies the general matching of 
constellations to matching triangles.  A window is placed 
around the newly sensed point, and all triangles formed by 
that point in the window are calculated in both the new and 
old surveys. The centroid of each triangle is calculated, and  
distances between the centroids of new and former survey 
triangles are calculated. If the centroid distance is less than 
the maximum error ellipse axis of the compared triangles, 
they are labeled a preliminary match. Next, the sphericity of 
the affine transformation between possible match triangles 
is calculated to estimate their similarity [12]. This results in 
a number on the unit interval. The triangle with the largest 
sphericity is the match, as long as the sphericity is greater 
than one half. 

 
Figure 6. 

Inscribed circle in left triangle related to the right triangle 
by affine transform T. Ellipse axes d1 and d2 form the 

transform of the circle. 
 
On relatively difficult testing sets, Control Point Matching 
has been shown to correctly match 90% of the points and 
mismatch 2/3 of the remaining points [11].  Given the 
flexibility and general applicably of Control Point 
Matching, we chose this for our area matching algorithm in 
this project.   

3 Preliminary Results 

To demonstrate that our feature-matching algorithm works 
as expected, we used an initial test data set of 120 contact 
points randomly distributed in a one square kilometre area. 
Two survey data sets were computed from the initial data 
set by adding a random distance vector from a Gaussian 
distribution with a 7-meter 95% confidence radius. Three 
sets of points were too close together for feature matching 
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to apply. Two other points were not matched, one more 
than expected but within the tolerances of such a small 
sample size.  
 
Since there is an operator available to match by sight and 
context, it is better to have a lower number of automatic 
matches if there is a corresponding decrease in mismatches.  
Control Point Matching must be tuned down by increasing 
the sphericity match threshold until the number of false 
matches decreases. In our preliminary test experiments, we 
reduced the number of false matches to below one percent 
of total contacts, with a drop in matches to 70% of total 
contacts. We believe with further work we can increase this 
match percentage with a similar or lower level of false 
matches. 

4 Conclusion 

Automatic intersurvey Change Detection is actively desired 
by surveying organizations. Any improvement over 
manually deconflicting data points will result in significant 
manpower savings. Given that the expected average contact 
density will allow feature matching to complete the match 
90% of the time, Control Point Matching tuned down to 
eliminate false positives should allow us to exceed our goal 
of 80% autodetect on surveys of sufficient data quality. It is 
believed that 80% autodectetion should halve the 
manpower required for deconfliction. Savings of fifteen 
minutes per contact should also realize deconflicting 
between survey swaths. 
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