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Historic oceanographic sound speed profiles have traditionally been grouped by area and time period, usually 
one degree square area and monthly time. After grading the profiles, mean profiles and standard deviations are 
calculated from the accepted profiles and in the acoustics community they are then used to predict the expected 
acoustic response of the region.  Here the historic profiles  in  NOAA's World Ocean Database 2005 will be 
divided into the same area and time periods, but in subsets with a sufficient number of profiles, fuzzy clustering 
will be employed on acoustically relevant oceanographic parameters (mixed layer depth, surface temperature, 
sound speed gradient, etc) to divide the population into multiple clusters. A parabolic equation acoustic 
transmission model is then applied  on the WOD2005 statistical profiles and on the fuzzy cluster populations. 
Conclusions will be drawn about the suitability of this clustering to capture the variability of acoustic response at 
a given time and place.  

1 Introduction 

Acoustic performance predictions for an area depend on the 
oceanographic climatology available. Present climatologies 
such as the National Oceanic and Atmospheric 
Administration’s (NOAA) World Ocean Database 2005 
(WOD 2005)1 break the oceans into regions and time 
periods and assume that the probability distribution of the 
profiles is gaussian. A normal probability distribution is 
usually a safe first guess at an unknown probability 
distribution, however especially in tropical and subtropical 
regions it is known that the temperature and salinity profiles 
during a given month can fall into two distinct groups: 
those without a significant mixed layer depth and those 
with significant mixed layer depths caused by some storm 
event.  Here we will introduce fuzzy clustering to break a 
set of profiles  into two populations and then use an average 
of parabolic equation  method (PE) model runs and the 
variance of this average to show that  the two populations 
and the combined populations lead to similar but   
statistically different acoustic predictions. These improved 
climatologies could also be used to improve oceanographic 
temperature and salinity predictions. 

2 Method 

2.1 Fuzzy Clustering 

Rather than forcing the analysis function to make each 
point belong to a particular cluster, fuzzy cluster analysis 
lets the points have partial memberships. It is tempting to 
see these partial memberships as probabilities of 
membership, but this view leads one into thinking that the 
datum is only in one cluster whose location is obscured 
from us as opposed to the correct idea that the datum is 
partially in each cluster. Fuzzy cluster analysis finds the 
degree of membership of a data point in each cluster. With 
the caveat that the sum of the memberships for a point must 
equal unity and that the point has to have a measurable 
membership in each cluster.  L.A.Zadeh[2] introduced the 
fuzzy sets to model imprecise propositions. Later 
algorithms were developed for using these sets in pattern 
recognition[3,4].  Here we will be using clustering 
algorithms developed by C. Borgelt [5] that downloadable 
from: http://www.borgelt.net/cluster.html.   
By way of introducing Fuzzy Clustering for oceanographic 
profiles we will first examine clustering of a littoral 

oceanographic areas of interest. The temperature profiles 
can vary over time and place widely through out the large 
number of historical measurements available. It may be 
difficult to get an understanding of the underlying 
environmental forcing mechanisms by just looking at the 
raw data sets. Oceanographers and their customers have 
found that dividing the data into areas and seasons of 
similar profiles helps explain the environmental variability 
and forcing functions.  
These provinces have been found to be useful, however 
determining an area’s provinces and seasons has 
traditionally been more of an art than a science. Historically 
characteristics of the data would be taken and then grouped 
in some fashion. For example the Naval Underwater 
Systems Center (NUSC) grouped deep water data by the 
temperature profiles similarity at given depths [Podeszwa]. 
There has been cluster analysis used examine sound speed 
profiles in the Gulf of Alaska [Moustafa]. Where data 
points are forced into clusters by minimizing the sum of: 

                            drs = sqrt(∑I=1,n(cri – csi)2)                       (1) 

over each element in a set of predetermined size clusters  
where  d is the distance between sound-speed profiles and  
cri , csi are the respective sound-speeds at the Ith depth. 
These clusters are then grouped repeatedly by the same 
method until all points in one set. Then one determines 
which level of clustering the data seems to naturally cluster. 
This method has been commonly used in deep water where 
generally after a certain depth all profiles are similar and 
therefore can be universally trimmed to that depth causing 
the profiles to be comparable at all points. In shallow water 
however, point by point comparison is not generally 
possible given the common occurrence of significant 
differences below the depth of the shallowest profile in the 
data. 
 Here Fuzzy Clustering will be applied to overcome this 
difficult for an area off the North Carolina coast. The 
profiles were clustered on the temperature parameters. 
Temperature was chosen so that Expendable 
Bathythermographs (XBT) data could be included without 
having to imply salinity profiles for each XBT.  The 
simplification was determined to be valid except for near 
shore area effected by fresh water discharges, however all 
such areas were very shallow in this case and can be seen as 
one province. The 2860 profiles used were taken 
throughout the year from 1990 onward.  
Each parameter is treated as if it is independent of the other 
parameters and weighted equally, making it best to limit the 
number of parameters used. In this case surface 
temperature, surface iso temperature depth, mean 
temperature, and summed temperature slope were used as 
the temperature parameters. 
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Figure 1 Four cluster case off North Carolina. 

Figure 1 shows the area provinced into 4 clusters and figure 
2 shows the area provinced into 8 clusters. The four cluster 
map has three visible regions with the near shore region 
consisting of two clusters intertwined. On examination of 
the profiles contained in the clusters, they were seen as 
summer and winter profiles. The eight cluster case has 
approximately the same regions with each region 
subdivided into two or more seasons. Note that there are 
fewer stations visible on the eight cluster map. As the 
number of clusters increases the membership percentages 
are spread between more clusters making fewer of the 
stations pass the minimum membership threshold. We 
believe the four cluster view gives the best description of 
the whole year environment and the eight cluster view 
shows that the data should be split among the seasons and 
then provinced into a low number of clusters for the best 
description of the oceanographic area related to acoustic 
performance. 

 
Figure 2. Eight cluster case same data set. 

2.2 Acoustic Effects Modeling 

In order to show the differences in acoustic propagation for 
sets of profiles differentiated into clusters as described in 
Section 2.1, two ensembles of profiles were used as input 
for the propagation model RAM[9].  Other environmental 
input parameters were chosen to be fairly generic: flat 
bathymetry at 1000 meters, and source and receiver depths 
of 50 meters.  The bottom parameters for sound speed, 
density, and attenuation were isotropic and the standard 
benchmarking values[10] of 1500 m/s, 1.5 g/cc, and 0.5 
dB/λ.  Two source frequencies, 50 Hz. and 3 kHz., were 
chosen to show the effects of the water sound speed profile 
clusters at low and mid-frequencies. 
The resulting transmission loss (TL) curve from each 
ensemble member was range averaged to simulate third-
octave frequency averaging[11], as would be used in a 
typical ocean survey operation[12].  These TL ensembles 
were subsequently pressure averaged, and standard 
deviations about pressure average were generated at each 
range. 
 

3 Preliminary Results 

An area in the South China Sea was chosen for an initial 
examination of profile fuzzy clustering.  The month of 
January was chosen selection the Conductivity, 
Temperature, Depth(CTD) profiles available in the WOD 
database for the chosen one degree square area. Profiles 
were clustered into two clusters using: surface temperature, 
surface sound speed duct, mean temperature, and summed 
sound speed slope.  Where needed soundspeed was 
calculated by converting depth back into pressure as in 
Leroy[13] and then calculating sound speed at each depth 
point using the Chen Milleno formulation[14].  
Figure 3 displays the profiles from the resultant clustering. 
As can be seen by the average profiles Cluster 0 has a 
deeper surface duct than Cluster 1. The upper standard 
deviation profile surface temperature in Cluster 0 is 
approximately equal to the average profile surface 
temperature in Cluster 1. As expected the average profile 
for all profiles lies between the average profiles for Clusters 
0 and 1 and that the standard deviation of all profiles is 
larger than that of both Cluster 0 and Cluster 1 yet not 
containing their full ranges.   
Oceanographic profiles are sometimes quality controlled by 
checking if the new measured profile fits within a set 
number (usually  three) standard deviations of the relevant 
historical  profiles. In this case using the appropriate cluster 
would result in differing quality control determinations than 
would be found using only the all cluster profile standard 
deviations. 
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Figure. 3. Profiles in the two clusters displayed above all 

Profiles. 
Red profiles are the individual profiles. Middle green line is 

the average profile with the surrounding green lines plus 
and minus one standard deviation. Black line is a sample 

profile of each set. 
 

Next 100 profiles were extracted from each Cluster. For 
each selected profile the acoustic transmission loss was 
calculated as in Section 2.2 with the resulting average 
transmission loss graphs displayed in Figures 4 and 5. It is 
not surprising that for the 50 Hz case there is noticeable but 
small differences detected. At such low frequencies the 
surface sound speed duct differences between Cluster 0 and 
Cluster 1 do not greatly effect transmission loss. However 
as can be seen in Figure 5 at higher frequencies the clusters 
display meaningful differences in transmission loss. 
 

 
Figure 4.  Results from 50 Hz. calculation for ensembles 0 

(red) and 1 (black).  
 Averaged transmission loss is shown as a heavy line, and 

standard deviations are shown as fine lines for each 
ensemble.  Beyond 15 km, the differences are statistically 
significant, however they may be too small to discern over 

noise and experimental uncertainties. 
 

 
Figure. 5.  Results from 3 kHz. calculation for ensembles 0 

(red) and 1 (black). 
Averaged transmission loss is shown as a heavy line, and 

standard deviations are shown as fine lines for each 
ensemble.  The results from the two ensembles are both 

statistically distinct, and sufficiently well separated as to be 
experimentally resolved. 
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4 Conclusion 

We have shown the fuzzy clustering on a few 
oceanographic profile features as well as sorting by area 
and month can produce better climatology where there is 
sufficient data. The improved climatology would chose 
between the two available profiles depending of the surface 
temperature and sea surface height remotely sensed. The 
chosen profile would then be used as a starter profile for the 
ocean prediction model. The clustering / PE ensemble run 
tool can also be used to province near shore regions. 
Further work is needed to incorporate other data bases such 
as the ARGO (http://www.argo.net) profiling floats, gliders, 
and include XBT using estimated salinity. 
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