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Previously, scattering measurements from single nylon cylinders were used to compare to measurements from 
cancellous bone.  The comparison required the assumption of incoherent scattering to extrapolate scattering from 
a single cylinder to a network of cylinders.  Now, the experimental model has been improved by the use of arrays 
of parallel-nylon wires, which are better models of cancellous bone.  Good agreement between theory and 
experiment was found.   

1 Introduction 

The investigation of scattering from cancellous bone is 
important for two reasons.  First, backscatter from 
cancellous bone has been shown in clinical trials to have 
diagnostic value [1-4].  Backscatter is an attractive clinical 
measurement because, unlike through-transmission 
measurements such as broadband ultrasound attenuation 
(BUA) and speed of sound (SOS), it only requires one 
transducer and therefore may potentially be applied to 
important skeletal sites such as hip and spine.  Second, 
scattering is a fundamental mechanism for the interaction 
between ultrasound and bone.  BUA, for example, is the 
combined result of absorption and scattering.  Improved 
understanding of scattering may lead to development of 
improved ultrasound-based methods for detection of 
osteoporosis. 
A scattering model based on elastic scattering from a 
cylinder has previously been reported [5-8].  The model 
predicts the frequency-dependence of backscatter from 
human calcaneus samples in vitro very well.  The model 
was validated by performing backscatter measurements on 
individual wires.  Cancellous bone was assumed to be 
comprised of a network of thin cylinders (trabeculae).  
Echoes from individual cylinders within the network were 
assumed to add incoherently.  This assumption implied that 
the frequency dependence of backscatter from a network of 
cylinders is the same as that from a single cylinder [6]. 
In the present paper, scattering measurements from arrays 
of nylon wires are reported.  Measurements from arrays 
permit more direct comparison to cancellous bone than the 
previous measurements from single nylon wires. 

2 Methods 

Phantoms consisting of parallel nylon wires (simulating 
trabeculae) in two-dimensional rectangular grid arrays 
(custom-built by Computerized Imaging Reference 
Systems, Norfolk, VA) were interrogated.  The nylon wire 
diameter corresponded to trabecular thickness, which in the 
standard nomenclature for bone histomorphometry is 
denoted by Tb.Th [9].  Four values for Tb.Th were used:  
150 μm, 200 μm, 250 μm, and 300 μm.  The spacing 
between wires was 800 μm.  See Reference 10 for details.  
These phantoms were originally used to explore the 
relationship between speed of sound and porosity, a topic 
that has also been investigated by other investigators [11-
14]. 
Scattering was far greater than absorption in these 
phantoms (for the range of ultrasonic frequencies used).  
Therefore, through-transmission attenuation measurements 
could be used to assess scattering.  Phantoms were 
interrogated in a water tank using a Panametrics (Waltham, 

MA) 5800 pulser/receiver and pairs of coaxially-aligned 
Panametrics broadband, 19 mm diameter, focused 
transducers (center frequencies 2.25 and 3.5 MHz).  The 
propagation path between transducers was twice the focal 
distance (2 X 38 mm = 76 mm).  Received radio frequency 
(RF) signals were digitized (8 bit, 25 MHz) using a LeCroy 
(Chestnut Ridge, NY) 9310C Dual 400 MHz oscilloscope 
and stored on computer (via GPIB) for off-line analysis.  
Five measurements (of ten RF lines each) were obtained on 
each phantom for each center frequency.  Phantoms were 
removed from the tank and then repositioned between 
measurements. 
Theoretical predictions for scattering were based on Faran’s 
theory for elastic scattering from cylinders [5].  The 
material properties of nylon were assumed to be 
longitudinal velocity = 2500 m/s, density = 1.12 g/cm2, and 
Poisson’s ratio = 0.39.  These values may be found at 
http://www.ultrasonic.com.  (The value of velocity was 
reduced from 2600 to 2500 m/s in order to improve 
agreement between theory and experiment.  It is understood 
that the values in the tables at http://www.ultrasonic.com 
are only approximate and not all nylon samples have 
identical material properties.)  The material properties of 
water were assumed to be longitudinal velocity = 1480 m/s 
(at room temperature of about 20 degrees C) and density = 
1 g/cm2.  The total scattering coefficient was estimated by 
averaging the angular-dependent scattering coefficient over 
all angles from 0 to 360 degrees. 

3 Results 

Figure 1 shows measurements and theoretical predictions of 
attenuation coefficient versus frequency for all four 
parallel-nylon-wire arrays.  Recall that, in this experiment, 
nearly all attenuation was due to scattering.  Theoretical 
functions were scaled by a frequency-independent factor in 
order to match measurements.  Good agreement in 
frequency-dependence of measurements and theory may be 
seen over the range from 1.5 to 3.5 MHz.  Agreement for 
Tb.Th = 200 μm, however, was not quite as good as in the 
other three cases. 

4 Conclusion 

Previously, scattering measurements from single nylon 
cylinders were used to compare to measurements from 
cancellous bone [6-8].  The comparison required the 
assumption of incoherent scattering.  Now, the 
experimental model has been improved by the use of arrays 
of parallel-nylon wires, which are better models of 
cancellous bone.  Good agreement between theory and 
experiment was found.   
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Figure 1.  Dashed lines: theory.  Solid lines: experiment.  
Dotted lines: plus or minus one standard deviation. 
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