
Elimination of corner-turning in FFT-based sonar array
beamforming

Jacob Barhena, Travis Humblea and Michael Traweekb

aOak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6015, USA
bOffice of Naval Research, 875 North Randolph Street, Arlington, VA 22203, USA

barhenj@ornl.gov

Acoustics 08 Paris

11139

Abstract. The emergence of ultra-low power multicore processors will open unprecedented opportunities for
implementing sophisticated signal processing algorithms faster and within a much lower energy budget. In that
context, the concept of “corner turning” has been, for many decades, at the heart of array beamforming via
Fourier transforms. As widely reported in the open literature (both for sonars and radars), the computational
sequence involving corner turning operations, i.e., the sequence: temporal Fourier transforms data cube corner
turning spatial Fourier transforms, constitutes a major obstacle to achieving high-performance and lower
power dissipation (by reducing the number memory accesses). To date, leading industry providers still include
explicit corner turning stages in their computational flow architectures for multidimensional array processing.
The primary innovation reported in this paper addresses the development of a computational scheme that avoids
altogether the corner turning stage. We discuss its implementation on currently available IBM CELL multicore
technology and provide initial timing results.

1 Introduction

With the emergence of ever stealthier underwater targets,
there is a continuing need to develop innovative approaches
for near–real–time remote detection, classification, localiza-
tion, and tracking. The complexity of calculations required
to perform these tasks increases dramatically with the
rapidly growing sophistication of the required algorithms,
as well as with capabilities of the deployed sensor arrays.
This results in substantial processing power requirements
that cannot readily be met even with leading-edge
conventional computing hardware.

To illustrate this challenge, consider phased acoustic arrays
(PAA). For instance, two-dimensional PAA provide an
attractive means for precise and reliable close-in tracking
and avoidance of quiet targets. From a computational
perspective, one of the most demanding aspects of PAA
data processing involves the beamforming (BF) algorithms.

As widely reported in the open literature, the computational
sequence involving corner turning operations, i.e., the
sequence: temporal Fourier transforms data cube corner
turning spatial Fourier transforms, constitutes one of the
primary obstacles to achieving high-performance (and
lower power dissipation) in sensor arrays. Even with the
emergence of novel multicore processors, leading system
providers still include explicit corner turning stages in their
computational flow architectures for array processing.

The primary innovation reported in the present article is the
development, implementation, and demonstration of a
massively parallel computational scheme that avoids
altogether the corner turning stage. We are presenting the
details of this scheme in the context of the IBM Cell multi-
core processor. However, the underlying paradigm is
general, and could readily be specialized to other multicore
architectures, ranging from existing quad-core AMD and
Intel processors, to upcoming computational platforms with
a much larger number of cores.

2 Corner turning in FFT BF

The concept of “corner turning” has been, for many
decades, at the heart of beamforming via Fourier
transforms. Early articles (see, e.g., [1]) refer to the concept
of corner turning “memory” (CTM). Digitally filtered
samples from each hydrophone in a 2D PAA are initially
stored sequentially in a memory block. These data

sequences are then Fourier transformed into the frequency
domain, and stored into the CTM, a second auxiliary block.
The CTM storage is organized in such a manner as to
enable efficient spatial processing, where data need to be
invoked in terms of spatial (i.e., hydrophone) order rather
than in sequential (temporal or temporal frequency) order.
For a one dimensional sensor array, this corresponds simply
to transposing the space vs temporal frequency matrix. For
2D arrays, the operation can be envisioned as a set of
rotations and mirror reflections.

A substantial number of papers have been published in this
area, both for sonars (see, e.g., [2, 3]) as well as radars (see,
e.g., [4, 5]). There has also been growing interest in imple-
menting “multidimensional” FFTs on parallel processors
[6]. Often, it is convenient to envision a PAA beamforming
process as such a “multidimensional” FFT, where, for a 2D
sensor array, one of the dimensions is temporal and two
dimensions are spatial. There have also been proposals for
new software languages [7] to address the parallelization
challenge. In terms of hardware implementation, there has
been much emphasis on energy-efficient FPGAs [8] or
other dedicated systems [5].

The sequel of this paper is organized as follows. Section 3
provides a brief background on the multicore computational
platform. Then, the new no-corner-turning BF paradigm is
proposed in Section 4. Practical implementation and timing
results are addressed in Section 5. Finally, conclusions
reached so far are given in Section 6.

3 Computational platform

Four parameters are of paramount importance when
evaluating the relevance of emerging computational
platforms for time-critical, embedded applications. They
are: (1) the computational speed, measured in GFLOPS or
in GOPS (giga floating point or integer operations per
second), (2) the communication speed, i.e., the I/O and
inter-processor data transfer rates measured in GB (giga
bytes) per second, (3) the power dissipated, measured either
in Watts or in pico-Joules per operation, and (4) the
processor footprint, expressed either in area or volume
units, as appropriate. For each of these parameters, one
could compare the BF performance for different hardware
platforms and software (e.g., compilers) tools. Results
reported here refer to the IBM CELL processor.

In 2000, IBM, Sony, and Toshiba formed an alliance to
develop a revolutionary computational platform for game
and video applications and for numerically intensive tasks

Acoustics 08 Paris

11140

in science and engineering. The Cell Broadband Engine™
architecture [9] is the extraordinary resulting product of 5
years of sustained, intensive R&D effort (involving over $
400 M investment). It is comprised of one multithreaded
64-bit PowerPC processor element (PPE) with two levels of
globally coherent cache, and 8 synergistic processor
elements (SPEs). Each SPE consists of a processor (SPU)
designed for streaming workloads, local memory, and a
globally coherent DMA engine. Computations are
performed in 128-bit wide SIMD. An integrated high-
bandwidth element interconnect bus (EIB) connects the
nine processors and their ports to external memory and to
system I/O.

Fig 1. CELL processor architecture.

The key CELL design parameters are as follows. Each SPE
comprises a 25.6 GFLOP (single precision) synergistic
processing unit (SPU), a 256 KB local store memory, a
2×25.6 GB/s DMA engine, and 128 128-bit registers, which
enable SIMD-type exploitation of data parallelism. It is
designed to dissipate 4W at a 4 GHz clock rate. The EIB
provides 2 × 25.6 GB/s memory bandwidth to each SPE,
and allows external communication (I/O) up to 35 GB/s
(out), 25 GB/s (in). The PPE has a 64-bit RISC PowerPC
architecture, a 32KB L1 cache, a 512 KB L2 cache, and can
operate at clock rates in excess of 3 GHz. The total power
dissipation is estimated nominally around 100W per node
(not including system memory and NIC). The total peak
throughput exceeds 200 GFLOPS for a total communi-
cation bandwidth above 200 GB/s.

Because of their highly competitive costs, we initially
acquired several Sony PS3 platforms. Each such platform
includes a CELL processor, but only 6 out of 8 SPE cores
are available to the user. Thus, the PS3s can be employed
for algorithm development, debugging and testing, prior to
porting code to 9-cores (PPE + SPEs) CELL hardware.

4 The no-corner-turning paradigm

We will consider an acoustic sensor array comprising NV
vertical and NH horizontal nodes (omni directional
hydrophones). Over a time interval of interest, NS data
samples are generated at each node. We assume that the
properly conditioned data for each hydrophone are stored in
an increasing temporal order, producing a data structure
representation illustrated in Fig 2.

Fig 2. PAA a structure. In
the figure, the symbol
denotes the physical
sensors. Only the array
boundaries and one inte-
rior sensor are shown.
The dotted lines (…)
refer to the data samples
generated at each sensor.

To achieve beamforming, we consider a frequency domain
spatial Fourier transform paradigm. In order to enable a
more precise discussion, let us denote by , ()m n kS t the k-th
sample measured at time tk, associated with a hydrophone
located at position (,)n mx y in the array. It is clear that the
indices m and n vary from 1 to NV and 1 to NH, respectively,
while k spans the range 1 to NS. The frequency domain
representation (see Fig 3) is obtained, conventionally,
through the following algorithm

H

V

, F , S

DO 1 :

 DO 1 :

 ENDDO()

ENDDO()

 { () | 1 : } [{ () | 1 : }]m n t m n k

n N

m N

k

m

n

f N S t Nν ν

=

=

Φ = = =F
 (1)

Fig 3. Illustration of corner turning

In Eq (1), Φt denotes a one-dimensional Fourier transform
(typically an FFT) in the time domain, and NF refers to the
number of frequencies f. The data in cube S are real, while
the data in cube � are complex (and NF = NS / 2). To
proceed with the spatial Fourier transforms, data need to be
“corner turned”. This is illustrated in Fig 3.

16 B/c

16 B/c

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

PPE

PPU

L1

L2

16 B/c

32 B/c

16 B/c 16 B/c x 2

MIC BIC

Dual XDR RRAC I/O

16 B/c

16 B/c

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

PPE

PPU

L1

L2

16 B/c

32 B/c

16 B/c 16 B/c x 2

MIC BIC

Dual XDR RRAC I/O

16 B/c

16 B/c

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

16 B/c

16 B/c

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycle

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 0

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 1

SPU

LS

AUC

MFC

SPE 7

SPU

LS

AUC

MFC

SPE 7

EIB up to 96 B / cycleEIB up to 96 B / cycle

PPE

PPU

L1

L2

16 B/c

32 B/c

PPE

PPU

L1

L2

PPE

PPU

L1

L2

16 B/c

32 B/c

16 B/c 16 B/c x 2

MIC BIC

Dual XDR RRAC I/O

16 B/c 16 B/c x 2

MIC BIC

Dual XDR RRAC I/O

MIC BICMIC BIC

Dual XDR RRAC I/O

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H

(1,1,1)

N V

N F

n

, ()n mQ yν

mN H(1,1,1)

N V

N F

m

n

, ()m n fνΦ

N H

(1,1,1)

N V

N F

n

, ()n mQ yν

m

N H

(1,1,1)

N V

N F

n

, ()n mQ yν

m

N H

(1,1,1)

N V

N F

n

, ()n mQ yν

mN H(1,1,1)

N V

N F

m

n

, ()m n fνΦ

N H(1,1,1)

N V

N F

m

n

, ()m n fνΦ

N H(1,1,1)

N V

N F

m

n

, ()m n fνΦ

(1,1,1)

N V

N F

m

n

, ()m n fνΦ

Acoustics 08 Paris

11141

On the left hand side, is the sample data cube in the
frequency domain,�. In the “corner turned” data cube Q,
the frequency samples are stored in contiguously increasing
hydrophone order along the NV direction. Specifically,

, , , ,n m m nQν ν= Φ . Clearly, “corner turning” is a misnomer,
as the transformation is geometrically more involved. The
primary benefit is, however, that the spatial Fourier
transforms along the NV direction can now be efficiently
implemented.

ν σ ν

ν

κ

ν

σ

=

=

= = =

H

F

, V , V

DO 1 :

 DO 1 :

 ENDDO()

ENDDO()

 { () | 1 : } [{ () | 1 : }]y
n y n m

n N

N

m

n

P N Q y NF
 (2)

In Eq (2), κ y denotes the spatial frequency along the y (i.e.,
the NV) direction. A similar procedure (corner turning of P),
is applied in performing the spatial Fourier transform Φx

along the NH direction.

The main computational and energy (because of memory
access) BF costs arise from the sequence of alternate
directions FFTs with corner turning. With the emergence of
novel multicore processors, it is vital to design algorithms
that carry out such a sequence of computations in a near
optimal way. Before proceeding, we make the following
assumptions. We consider a processing system with NP
homogeneous computational cores. Thus, NP refers to 8
SPE cores on the standard IBM CELL, or 6 SPE cores on
the Sony PS3.

Basic Idea. The entire computational sequence (temporal
Fourier transforms corner turning spatial Fourier
transforms) can be implemented most efficiently by
properly combining sequential processing, parallel
processing, and concomitant data transfers. The high level
computational flow is as follows.

=

−
H

1

DO 1 :

 dist ribute th data plane of across cores {C ... }

 carry out temporal Fourier t ransforms

 in parallel, across all cores

 sequent ially, but in vectorized form,

PN

n N

n CS

no corner turning needed!

within each core

 generate synthet ic templates for spat ial Fourier t ransform

 ()

 carry out spat ial Fourier t ransforms across all cores

 in parallel, across all cores

 sequent ially, but in vectorized form, within each core

 collect and combine result ing data from all cores

 (data t ransfer carried out in parallel with computat ion)

ENDDO (n)

This involves sequential processing of data planes extracted
from the data cube S, segmentation of these planes and
distribution of the resulting data blocks across the
homogeneous cores, vectorized processing of each block
within its respective core, parallel processing of all cores,
and overlapping within each core of computation and data
transfer. We assume that, after conditioning, the data cube

S is stored in RAM from which it can be accessed via a
DMA engine by each core.

Data Plane Segmentation. As shown in Figure 4, each data
plane extracted from cube S contains NV rows of data
samples. Each row is a vector of length NS. We distribute
these data, grouped by sets of rows, to the available NP
cores.

Fig 4. Data Partitioning.

Note that if V PMOD(,) 0N N = , where MOD designates
the “modulo” function, then perfect load balance can be
achieved, and each core will store R V P/N N N= rows. In
the current version of the IBM CELL processor, only
256KB of memory are available at each core. This memory
needs to cover code, data, and stack. For large arrays, the
algorithms outlined below will still apply, but each data
plane would have to be processed in more than one pass
through the cores.

Temporal Fourier Transforms. Within each core, we now
need to carry out a set of one dimensional FFTs. Since for
each FFT the computational complexity is S 2 S()N Log N ,
the per-core complexity (assuming NR rows per core and no
FFT transverse set-vectorization) is R S 2 S()N N Log N . At
each core Ci (i = 1: NP), when processing data plane n

ν ν

= − +

Φ = = =
RR

, F , S

DO (1) 1 :

ENDDO()

 { () | 1 : } [{ () | 1 : }]m n t m n k

m i N iN

k

m

f N S t NF (3)

Since the cores are homogeneous, computations of equal
complexity are expected to take similar times on each core.
Thus, if the sets of temporal Fourier transforms are
processed in parallel, i.e., if each core works on its own set
of FFTs while all cores work in parallel, an overall
complexity of R S 2 S()N N Log N per data plane will be
achieved.

No Corner Turning. The primary innovation of our
proposed scheme is the avoidance of corner turning. To
achieve this capability, we exploit the linearity of the
Fourier transform. Assume that the n-th data plane is being
processed. After the temporal Fourier transforms stage, core
Ci stores the NR vectors of NF complex frequency samples

, F{ () | 1 : }m n f Nν νΦ = , with R R(1) 1 t o m i N iN= − + .

Conventionally, vectors �m,n(:) would be sent to the corner
turning memory, and properly stored within the matrix Q,
from which new vectors would subsequently be retrieved
for the spatial transforms.

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

PNC

iC

1C

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

N H(1,1,1)

N V

N S

m

n

, ()m n kS t

PNC

iC

1C

PNC

iC

1C

PNC

iC

1C

Acoustics 08 Paris

11142

In contradistinction, we proceed as follows. Recall that, at a
given temporal frequency, complex samples from all
hydrophones in an array column have to be (spatially)
Fourier transformed. In order to avoid aliasing and enable
easy incorporation of array design constraints, we embed
the corresponding vectors of length NV (nominally
extracted from Q) into a spatial template vector (which we
denote q). This vector has a dimension Nκ that is
substantially larger than NV. The template specifies the
exact positions into which the contributions (i.e., complex
frequency samples) from each hydrophone in a particular
column must be stored. We exploit this spatial design and
the linearity of the Fourier transform to develop the
following parallel computational scheme.

Initially, the spatial template is provided to each core. More
specifically, an array iπ is assigned to each core Ci such
that, for R(1)j i N μ= − + , with R1 : Nμ =

,[()] () |i
nq j νμπ = Φ . (4)

All other positions in q for core i will be padded with zeros.
In other words, when processing data plane n (i.e., the n-th
column of the hydrophone array), we are embedding in
each core only the complex frequency samples corres-
ponding to the rows of data samples assigned to that core.
Such assignments are done in parallel for all cores.

Overlapping Communications and Computation. The
high-level architecture of the CELL processor was shown
in Fig 1. As can be seen, each SPE core can communicate
directly (using a DMA engine via the EIB) not only with all
other cores, including the PPE, but also with a dual XDR
storage and with external I/O. Within each core, notice a
memory flow control unit (MFC). The MFC enables a user
to send data from the core’s local store (LS) to any
destination of interest.

Hence, while computation is being performed in the SPU
unit, data transfers can occur concomitantly. In our case,
the computation of interest is a spatial Fourier transform of
a vector q containing Nκ complex data. The resulting vector
p will also be of length Nκ , and will be stored in LS. We
need to carry out NF such computations per data plane.
Thus, while vector q for frequency ν is being processed in
the SPU, MFC can dispatch vector q for the just-processed
frequency ν-1 to the destination (e.g., the PPE), where the q
vectors from all cores are combined (see below).

Note that it may be even more efficient to combine several
such vectors in a single data packet before dispatch. How
many depends on the speed of computation versus the
latency and cost of data transfer.

Spatial Fourier Transforms. Let ()i νq denote the spatial
template vector for core Ci when processing temporal
frequency ν. By definition,

 P

1
() ()i N i

i
ν ν

=

=
=q q (5)

If ()i νp represents the spatial Fourier transform of ()i νq ,
that is if

 () { ()}i i
yν ν=p qF (6)

Then, by linearity of the Fourier transform,

P P

P

1 1

1

() () { ()}

 { ()} { ()}

i N i Ni i
yi i

i N i
y yi

ν ν ν

ν ν

= =

= =

=

=

= =

= =

p p q

q q

= F =

F F
 (7)

Consequently, performing a distributed computation of the
Fourier transform across all cores will produce the required
result. We can now formulate the corresponding
computational scheme. Note that in absence of a vectorized
FFT, each core will loop over its assigned rows, as well as
all temporal frequencies. Thus, for core Ci , we get

μ ν ν

ν

μ μ μ

ν

ν

μ

κ

=

π = − + =

= = >

=

= = ϕ = Φ

=

+

+

+

+

+

F

F

R R

V

,

DO 1 :

 (1) , 1 :

ENDDO()

dim() dim() (index is implicit)

 0

 [()] () | () |

 { }

 () in LS()

i

i i

i

i i
n

i i
y

i

N

j i N N

N N i

q q j

i

in parallel with comp

s

u

et

ta

q p

q

p q

p

:

tion i

ν

ν ν

ν ν

+

+

%

%

%

 e

 e

1

 1

:

 check availability of () in LS()

 either send () while () is being computed in SP U()

or concatenate: (), (), ... in LS()

() ()
i

i i

i i

i

i

i

i

in SPU , use MFC t

p

p

o

p

p

p

ν ν+ +1 2while comput ing: (), (), ... in SP U()

 prior to sending to P P E (while st ill comput ing)

i i ip p

 (8)

In the above formulation, the vector ϕi denotes data local to
Ci. The correspondence with the frequency samples cube Φ
has also been indicated. The vectors pi are accumulated in
the destination core (e.g., the PPE or an SPE on the CELL),
combined according to Eq (7), and stored for further
processing. We can now proceed with the actual imple-
mentation on a CELL computational platform.

5 Implementation and Timing Results

For developing highly complex, computationally-intensive
programs, IBM recommends using the XLF compiler for
multicore acceleration on Linux operated systems. It is part
of the SDK 3.0 release, and provides, under Fedora 7, an
advanced, high-performance cross-compilation capability
that is tuned for the Cell Broadband Engine™ architecture.
XLF fully supports the FORTRAN 95 standard, and also
incorporates many features from the latest leading-edge
FORTRAN 2003 standard. Thus, it provides not only
unique array language capabilities, but also includes an
optimizer capable of performing interprocedure analysis,
loop optimizations, and true SIMD optimizations. Hence,
the compiler back-end generates highly-optimized code for
the PPU and SPU architectures, a condition sine qua non
for achieving high computational performance. Since this
compiler was only very recently released, the results
reported herein refer to a software environment consisting
of the Fedora Core 6 OS along with version 2.1 of IBM’s
CELL SDK, which included the IBM XLC C compiler
enhanced for the CELL.

The written code is separated into PPE and SPE
components. The PPE component consists of a PPE
main() routine that performs initialization of the 3D data,
spawns the SPE threads, and adds together the partial
spatial FFT results generated by the SPEs. The SPE
component consists of the SPE main() routine that

Acoustics 08 Paris

11143

performs the temporal and spatial FFTs on the designed
data strips, and copies the results back to main memory
(MM). The SPE program makes use of three high-level
functions: a load function to retrieve data from MM, a store
function to copy data to MM, and the 1D FFT function.

Parameters for the code include the length of the temporal
data samples (tSIZE), the number of SPEs to use in the
processing (nSPES, limited by the number of available
SPEs), the number of vertical elements per SPE (vSIZE),
the number of horizontal elements (hSIZE), and the size of
the padded vector used in performing the spatial FFT
(PADDED_vSIZE).

For collecting our timing measurements, we have used the
gettimofday()command, which is prototyped in
sys/time.h. The command can be used to report time
differences with microsecond accuracy. We have made use
of an artificial looping procedure to gather better timing
statistics. The latter number of iterations is labelled as
myTRIALS.

The code was run using the parameters shown in Table 1.
We have found that a single execution of the code with a
data block given by tSIZE × vSIZE × nSPES ×
hSIZE is significantly faster than the time required for
spawning the threads on the individual SPEs. Results are
shown in Tables 2 and 3.

Number of data points per row tSIZE 2048

Number of available SPEs nSPES 6

Number of m values per SPE vSIZE 8

Total number of m index values nSPES×vSIZE 48

Padded size of m domain PADDED_vSIZE 256

Number of n index values hSIZE 8

Table 1. Parameters used for testing the distributed
FFTs on the CELL.

myTRIALS Total time Per data block

100 4.48 s 44.80 ms

1000 33.33 s 33.33 ms

10000 321.92 s 32.30 ms

Table 2. Timing results. The number of trials denotes
the effective number of data blocks processed within the
stated time.

Table 3. Aggregate time spent on the SPEs and
the PPE during execution of the FFTs sequence.

6 Conclusions

The results in Table 3 show that the PPE summation
requires more time than the actual computation on the
SPEs. In the future, we will use inter SPE communication
procedures, in conjunction with a full implementation of the
possible computation-communication overlap.

The primary innovation resulting from the present effort is
the development of a massively parallel computational
scheme that avoids altogether the BF corner turning stage.
We presented details of this scheme in the context of the
IBM CELL multicore processor. However, the underlying
paradigm is general, and could readily be specialized to
other multicore architectures. The algorithms were pro-
grammed in enhanced C for multicore processing. The
recent release by IBM of the XLF high-performance
compiler for multicore acceleration opens, via mixed
language (C and FORTRAN) programming (using inter-
language calls allowed by IBM’s XLC and XLF compilers)
an optimal framework for ultra fast future implementations.
Such a framework would fully exploit the intrinsic array
language, compiler optimization and numerical capabilities
of FORTRAN in conjunction with the DMA and system
capabilities of C.

Acknowledgments

This work was supported by the United States Office of Naval
Research and by the Naval Sea Systems Command. Oak Ridge
National Laboratory is managed for the US Department of Energy
by UT-Battelle, LLC under contract DE-AC05-00OR22725.

References

[1] R. Trider, “A fast Fourier transform (FFT) based sonar signal
processor”, IEEE Tran Acoustics, Speech, and Signal
Processing, 26(1), 15-20 (1978).

[2] R. F. Follett and J. P. Donohoe, “A wideband, high-resolution,
low probability of detection FFT beamformer”, IEEE Journal
of Ocean Engineering, 19(2), 175-182 (1994).

[3] A. Chiang, S. Broadstone, and J. Gilbert, “Mul-tidimensional
beamforming device”, US Patent 6,111,816 (August 29,
2000).

[4] J. O. McMahon, “Space-time adaptive processing on the Mesh
Synchronous Processor”, Lincoln Laboratory Journal, 9(2),
131-152 (1996).

[5] J. Meyer, “Multifunction radar systems for the dep-loyed
warrior using VPX-REDI and RapidIO”, Military Embedded
Systems (Fall 2006).

[6] N. S. Sundar et al, “Hybrid algorithms for complete exchange
in 2D meshes”, IEEE Transactions on Parallel and
Distributed Systems, 12(12), 1201-1218 (2001).

[7] M. Mitchell and J. Oldham, “VSIPL++: parallel
performance”, unpublished report, CodeSourcery, LLC (May
2004).

[8] V. K. Prasana, “Energy efficient computation on FPGAs”,
Journal of Supercomputing, 32(2), 139-162 (2005).

[9] J. A. Kahle et al, “Introduction to the Cell multi-processor”,
IBM Journal of Research and Development, 49(4-5), 589-604
(2005).

myTRIALS Total
time

(s)

On the SPE
 s (percent)

On the PPE
s (percent)

100 4.51 2.71 (60) 1.80 (40)

1000 33.50 16.22 (48) 17.28 (52)

10000 322.72 150.48 (47) 172.23 (53)

Acoustics 08 Paris

11144

