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Abstract. The emergence of ultra-low power multicore processors will open unprecedented opportunities for 
implementing sophisticated signal processing algorithms faster and within a much lower energy budget. In that 
context, the concept of “corner turning” has been, for many decades, at the heart of array beamforming via 
Fourier transforms. As widely reported in the open literature (both for sonars and radars), the computational 
sequence involving corner turning operations, i.e., the sequence: temporal Fourier transforms  data cube corner 
turning  spatial Fourier transforms, constitutes a major obstacle to achieving high-performance and lower 
power dissipation (by reducing the number memory accesses). To date, leading industry providers still include 
explicit corner turning stages in their computational flow architectures for multidimensional array processing.  
The primary innovation reported in this paper addresses the development of a computational scheme that avoids 
altogether the corner turning stage. We discuss its implementation on currently available IBM CELL multicore 
technology and provide initial timing results. 

1 Introduction 

With the emergence of ever stealthier underwater targets, 
there is a continuing need to develop innovative approaches 
for near–real–time remote detection, classification, localiza-
tion, and tracking. The complexity of calculations required 
to perform these tasks increases dramatically with the 
rapidly growing sophistication of the required algorithms, 
as well as with capabilities of the deployed sensor arrays. 
This results in substantial processing power requirements 
that cannot readily be met even with leading-edge 
conventional computing hardware.  

To illustrate this challenge, consider phased acoustic arrays 
(PAA). For instance, two-dimensional PAA provide an 
attractive means for precise and reliable close-in tracking 
and avoidance of quiet targets. From a computational 
perspective, one of the most demanding aspects of PAA 
data processing involves the beamforming (BF) algorithms. 

As widely reported in the open literature, the computational 
sequence involving corner turning operations,  i.e., the 
sequence: temporal Fourier transforms  data cube corner 
turning  spatial Fourier transforms, constitutes one of the 
primary obstacles to achieving high-performance (and 
lower power dissipation)  in sensor arrays. Even with the 
emergence of novel multicore processors, leading system 
providers still include explicit corner turning stages in their 
computational flow architectures for array processing. 

The primary innovation reported in the present article is the 
development, implementation, and demonstration of a 
massively parallel computational scheme that avoids 
altogether the corner turning stage. We are presenting the 
details of this scheme in the context of the IBM Cell multi-
core processor. However, the underlying paradigm is 
general, and could readily be specialized to other multicore 
architectures, ranging from existing quad-core AMD and 
Intel processors, to upcoming computational platforms with 
a much larger number of cores.  

2 Corner turning in FFT BF 

The concept of “corner turning” has been, for many 
decades, at the heart of beamforming via Fourier 
transforms. Early articles (see, e.g., [1]) refer to the concept 
of corner turning “memory” (CTM). Digitally filtered 
samples from each hydrophone in a 2D PAA are initially 
stored sequentially in a memory block. These data 

sequences are then Fourier transformed into the frequency 
domain, and stored into the CTM, a second auxiliary block. 
The CTM storage is organized in such a manner as to 
enable efficient spatial processing, where data need to be 
invoked in terms of spatial (i.e., hydrophone) order rather 
than in sequential (temporal or temporal frequency) order. 
For a one dimensional sensor array, this corresponds simply 
to transposing the space vs temporal frequency matrix. For 
2D arrays, the operation can be envisioned as a set of 
rotations and mirror reflections. 

A substantial number of papers have been published in this 
area, both for sonars (see, e.g., [2, 3]) as well as radars (see, 
e.g., [4, 5]). There has also been growing interest in imple-
menting “multidimensional” FFTs on parallel processors 
[6]. Often, it is convenient to envision a PAA beamforming 
process as such a “multidimensional” FFT, where, for a 2D 
sensor array, one of the dimensions is temporal and two 
dimensions are spatial. There have also been proposals for 
new software languages [7] to address the parallelization 
challenge. In terms of hardware implementation, there has 
been much emphasis on energy-efficient FPGAs [8] or 
other dedicated systems [5]. 

The sequel of this paper is organized as follows. Section 3 
provides a brief background on the multicore computational 
platform. Then, the new no-corner-turning BF paradigm is 
proposed in Section 4. Practical implementation and timing 
results are addressed in Section 5. Finally, conclusions 
reached so far are given in Section 6. 

3 Computational platform 

Four parameters are of paramount importance when 
evaluating the relevance of emerging computational 
platforms for time-critical, embedded applications. They 
are: (1) the computational speed, measured in GFLOPS or 
in GOPS (giga floating point or integer operations per 
second), (2) the communication speed, i.e., the I/O and 
inter-processor data transfer rates measured in GB (giga 
bytes) per second, (3) the power dissipated, measured either 
in Watts or in pico-Joules per operation, and (4) the 
processor footprint, expressed either in area or volume 
units, as appropriate. For each of these parameters, one 
could compare the BF performance for different hardware 
platforms and software (e.g., compilers) tools. Results 
reported here refer to the IBM CELL processor.  

In 2000, IBM, Sony, and Toshiba formed an alliance to 
develop a revolutionary computational platform for game 
and video applications and for numerically intensive tasks 
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in science and engineering. The Cell Broadband Engine™ 
architecture [9] is the extraordinary resulting product of 5 
years of sustained, intensive R&D effort (involving over $ 
400 M investment). It is comprised of one multithreaded 
64-bit PowerPC processor element (PPE) with two levels of 
globally coherent cache, and 8 synergistic processor 
elements (SPEs). Each SPE consists of a processor (SPU) 
designed for streaming workloads, local memory, and a 
globally coherent DMA engine. Computations are 
performed in 128-bit wide SIMD. An integrated high-
bandwidth element interconnect bus (EIB) connects the 
nine processors and their ports to external memory and to 
system I/O. 

 

Fig 1. CELL processor architecture. 

The key CELL design parameters are as follows. Each SPE 
comprises a 25.6 GFLOP (single precision) synergistic 
processing unit (SPU), a 256 KB local store memory, a 
2×25.6 GB/s DMA engine, and 128 128-bit registers, which 
enable SIMD-type exploitation of data parallelism. It is 
designed to dissipate 4W at a 4 GHz clock rate. The EIB 
provides 2 × 25.6 GB/s memory bandwidth to each SPE, 
and allows external communication (I/O) up to 35 GB/s 
(out), 25 GB/s (in). The PPE has a 64-bit RISC PowerPC 
architecture, a 32KB L1 cache, a 512 KB L2 cache, and can 
operate at clock rates in excess of 3 GHz. The total power 
dissipation is estimated nominally around 100W per node 
(not including system memory and NIC). The total peak 
throughput exceeds 200 GFLOPS for a total communi-
cation bandwidth above 200 GB/s.  

Because of their highly competitive costs, we initially 
acquired several Sony PS3 platforms. Each such platform 
includes a CELL processor, but only 6 out of 8 SPE cores 
are available to the user. Thus, the PS3s can be employed 
for algorithm development, debugging and testing, prior to 
porting code to 9-cores (PPE + SPEs) CELL hardware.  

4 The no-corner-turning paradigm 

We will consider an acoustic sensor array comprising NV
vertical and NH horizontal nodes (omni directional 
hydrophones). Over a time interval of interest, NS data 
samples are generated at each node. We assume that the 
properly conditioned data for each hydrophone are stored in 
an increasing temporal order, producing a data structure 
representation illustrated in Fig 2.  

 
 
 
Fig 2. PAA a structure. In 
the figure, the symbol 
denotes the physical 
sensors. Only the array 
boundaries and one inte-
rior sensor are shown. 
The dotted lines (…) 
refer to the data samples 
generated at each sensor.  

To achieve beamforming, we consider a frequency domain 
spatial Fourier transform paradigm. In order to enable a 
more precise discussion, let us denote by , ( )m n kS t  the k-th 
sample measured at time tk, associated with a hydrophone 
located at position ( , )n mx y  in the array. It is clear that the 
indices m and n vary from 1 to NV and 1 to NH, respectively, 
while k spans the range 1 to NS. The frequency domain 
representation (see Fig 3) is obtained, conventionally, 
through the following algorithm 
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DO 1 :

  DO 1 :

  ENDDO( )

ENDDO( )
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Fig 3. Illustration of corner turning  

In Eq (1), Φt denotes a one-dimensional Fourier transform 
(typically an FFT) in the time domain, and NF refers to the 
number of frequencies f. The data in cube S are real, while 
the data in cube � are complex (and NF = NS / 2). To 
proceed with the spatial Fourier transforms, data need to be 
“corner turned”. This is illustrated in Fig 3.  
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On the left hand side, is the sample data cube in the 
frequency domain,�. In the “corner turned” data cube Q,
the frequency samples are stored in contiguously increasing 
hydrophone order along the NV direction. Specifically, 

, , , ,n m m nQν ν= Φ .  Clearly, “corner turning” is a misnomer, 
as the transformation is geometrically more involved. The 
primary benefit is, however, that the spatial Fourier 
transforms along the NV direction can now be efficiently 
implemented.                                                                                                                   

ν σ ν

ν

κ

ν

σ

=

=

= = =

H

F

, V , V

DO 1 :

  DO 1 :

  ENDDO( )

ENDDO( )

      

    { ( ) | 1 : } [{ ( ) | 1 : }]y
n y n m

n N

N

m

n

P N Q y NF
  (2) 

In Eq (2), κ y denotes the spatial frequency along the y (i.e., 
the NV) direction. A similar procedure (corner turning of P),
is applied in performing the spatial Fourier transform Φx

along the NH direction.  

The main computational and energy (because of memory 
access) BF costs arise from the sequence of alternate 
directions FFTs with corner turning. With the emergence of 
novel multicore processors, it is vital to design algorithms 
that carry out such a sequence of computations in a near 
optimal way. Before proceeding, we make the following 
assumptions. We consider a processing system with NP
homogeneous computational cores. Thus, NP refers to 8 
SPE cores on the standard IBM CELL, or 6 SPE cores on 
the Sony PS3.  

Basic Idea. The entire computational sequence (temporal 
Fourier transforms  corner turning  spatial Fourier 
transforms) can be implemented most efficiently by 
properly combining sequential processing, parallel 
processing, and concomitant data transfers. The high level 
computational flow is as follows. 

=

−
H

1

DO 1 :

   dist ribute th data plane of  across cores {C ... }

     carry out  temporal Fourier t ransforms 

        in parallel, across all cores

         sequent ially, but  in vectorized form, 

PN

n N

n CS

no corner turning needed!

within each core

     generate synthet ic templates for spat ial Fourier t ransform

       ( )

     carry out  spat ial Fourier t ransforms across all cores 

 in parallel, across all cores

         sequent ially, but  in vectorized form, within each core

     collect  and combine result ing data from all cores

       (data t ransfer carried out  in parallel with computat ion) 

ENDDO (n )

This involves sequential processing of data planes extracted 
from the data cube S, segmentation of these planes and 
distribution of the resulting data blocks across the 
homogeneous cores, vectorized processing of each block 
within its respective core, parallel processing of all cores, 
and overlapping within each core of computation and data 
transfer.  We assume that, after conditioning, the data cube 

S is stored in RAM from which it can be accessed via a 
DMA engine by each core. 

Data Plane Segmentation. As shown in Figure 4, each data 
plane extracted from cube S contains NV rows of data 
samples. Each row is a vector of length NS. We distribute 
these data, grouped by sets of rows, to the available NP
cores.  

Fig 4. Data Partitioning. 

Note that if V PMOD( , ) 0N N = , where MOD designates 
the “modulo” function, then perfect load balance can be 
achieved, and each core will store R V P/N N N= rows. In 
the current version of the IBM CELL processor, only 
256KB of memory are available at each core. This memory 
needs to cover code, data, and stack. For large arrays, the 
algorithms outlined below will still apply, but each data 
plane would have to be processed in more than one pass 
through the cores.    

Temporal Fourier Transforms. Within each core, we now 
need to carry out a set of one dimensional FFTs. Since for 
each FFT the computational complexity is S 2 S( )N Log N ,
the per-core complexity (assuming NR rows per core and no 
FFT transverse set-vectorization) is R S 2 S( )N N Log N . At 
each core Ci ( i = 1: NP ), when processing data plane n
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DO ( 1) 1 :

ENDDO( )
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f N S t NF    (3)  

Since the cores are homogeneous, computations of equal 
complexity are expected to take similar times on each core. 
Thus, if the sets of temporal Fourier transforms are 
processed in parallel, i.e., if each core works on its own set 
of FFTs while all cores work in parallel, an overall 
complexity of R S 2 S( )N N Log N  per data plane will be 
achieved.  

No Corner Turning. The primary innovation of our 
proposed scheme is the avoidance of corner turning. To 
achieve this capability, we exploit the linearity of the 
Fourier transform. Assume that the n-th data plane is being 
processed. After the temporal Fourier transforms stage, core 
Ci stores the NR vectors of NF complex frequency samples 

, F{ ( ) | 1 : }m n f Nν νΦ = , with R R( 1) 1 t o m i N iN= − + .

Conventionally, vectors �m,n(:) would be sent to the corner 
turning memory, and properly stored within the matrix Q,
from which new vectors would subsequently be retrieved 
for the spatial transforms.  
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In contradistinction, we proceed as follows. Recall that, at a 
given temporal frequency, complex samples from all 
hydrophones in an array column have to be (spatially) 
Fourier transformed. In order to avoid aliasing and enable 
easy incorporation of array design constraints, we embed 
the corresponding vectors of length NV (nominally 
extracted from Q) into a spatial template vector (which we 
denote q). This vector has a dimension Nκ that is 
substantially larger than NV. The template specifies the 
exact positions into which the contributions (i.e., complex 
frequency samples) from each hydrophone in a particular 
column must be stored. We exploit this spatial design and 
the linearity of the Fourier transform to develop the 
following parallel computational scheme.  

Initially, the spatial template is provided to each core. More 
specifically, an array iπ  is assigned to each core Ci such 
that, for R( 1)j i N μ= − + , with R1 : Nμ =  

,[ ( )] ( ) |i
nq j νμπ = Φ .                                 (4) 

All other positions in q for core i will be padded with zeros. 
In other words, when processing data plane n (i.e., the n-th 
column of the hydrophone array), we are embedding in 
each core only the complex frequency samples corres-
ponding to the rows of data samples assigned to that core. 
Such assignments are done in parallel for all cores.  

Overlapping Communications and Computation.  The 
high-level architecture of the CELL processor was shown 
in Fig 1. As can be seen, each SPE core can communicate 
directly (using a DMA engine via the EIB) not only with all 
other cores, including the PPE, but also with a dual XDR 
storage and with external I/O.  Within each core, notice a 
memory flow control unit (MFC). The MFC enables a user 
to send data from the core’s local store (LS) to any 
destination of interest.  

Hence, while computation is being performed in the SPU 
unit, data transfers can occur concomitantly. In our case, 
the computation of interest is a spatial Fourier transform of 
a vector q containing Nκ complex data. The resulting vector 
p will also be of length Nκ , and will be stored in LS. We 
need to carry out NF such computations per data plane. 
Thus, while vector q for frequency ν is being processed in 
the SPU, MFC can dispatch vector q for the just-processed 
frequency ν-1 to the destination (e.g., the PPE), where the q
vectors from all cores are combined (see below).  

Note that it may be even more efficient to combine several 
such vectors in a single data packet before dispatch. How 
many depends on the speed of computation versus the 
latency and cost of data transfer.  

Spatial Fourier Transforms. Let ( )i νq denote the spatial 
template vector for core Ci when processing temporal 
frequency ν. By definition, 

        P

1
( ) ( )i N i

i
ν ν

=

=
=q q                                (5) 

If ( )i νp  represents the spatial Fourier transform of ( )i νq ,
that is if 

        ( ) { ( )}i i
yν ν=p qF                                (6) 

Then, by linearity of the Fourier transform,  

        
P P

P

1 1

1

( ) ( ) { ( )}

                           { ( )} { ( )}

i N i Ni i
yi i

i N i
y yi

ν ν ν

ν ν

= =

= =

=

=

= =

= =

p p q

q q

= F =

F F
      (7) 

Consequently, performing a distributed computation of the 
Fourier transform across all cores will produce the required 
result. We can now formulate the corresponding 
computational scheme. Note that in absence of a vectorized 
FFT, each core will loop over its assigned rows, as well as 
all temporal frequencies. Thus, for core Ci , we get 
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     (8)               

In the above formulation, the vector ϕi denotes data local to 
Ci. The correspondence with the frequency samples cube Φ
has also been indicated. The vectors pi are accumulated in 
the destination core (e.g., the PPE or an SPE on the CELL), 
combined according to Eq (7), and stored for further 
processing. We can now proceed with the actual imple-
mentation on a CELL computational platform. 

5 Implementation and Timing Results 

For developing highly complex, computationally-intensive 
programs, IBM recommends using the XLF compiler for 
multicore acceleration on Linux operated systems. It is part 
of the SDK 3.0 release, and provides, under Fedora 7, an 
advanced, high-performance cross-compilation capability 
that is tuned for the Cell Broadband Engine™ architecture. 
XLF fully supports the FORTRAN 95 standard, and also 
incorporates many features from the latest leading-edge 
FORTRAN 2003 standard. Thus, it provides not only 
unique array language capabilities, but also includes an 
optimizer capable of performing interprocedure analysis, 
loop optimizations, and true SIMD optimizations. Hence, 
the compiler back-end generates highly-optimized code for 
the PPU and SPU architectures, a condition sine qua non
for achieving high computational performance. Since this 
compiler was only very recently released, the results 
reported herein refer to a software environment consisting 
of the Fedora Core 6 OS along with version 2.1 of IBM’s 
CELL SDK, which included the IBM XLC C compiler 
enhanced for the CELL. 

The written code is separated into PPE and SPE 
components. The PPE component consists of a PPE 
main() routine that performs initialization of the 3D data, 
spawns the SPE threads, and adds together the partial 
spatial FFT results generated by the SPEs. The SPE 
component consists of the SPE main() routine that 
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performs the temporal and spatial FFTs on the designed 
data strips, and copies the results back to main memory 
(MM). The SPE program makes use of three high-level 
functions: a load function to retrieve data from MM, a store 
function to copy data to MM, and the 1D FFT function.  

Parameters for the code include the length of the temporal 
data samples (tSIZE), the number of SPEs to use in the 
processing (nSPES, limited by the number of available 
SPEs), the number of vertical elements per SPE (vSIZE), 
the number of horizontal elements (hSIZE), and the size of 
the padded vector used in performing the spatial FFT 
(PADDED_vSIZE).

For collecting our timing measurements, we have used the 
gettimofday()command, which is prototyped in 
sys/time.h. The command can be used to report time 
differences with microsecond accuracy. We have made use 
of an artificial looping procedure to gather better timing 
statistics. The latter number of iterations is labelled as 
myTRIALS.

The code was run using the parameters shown in Table 1. 
We have found that a single execution of the code with a 
data block given by tSIZE × vSIZE × nSPES  × 
hSIZE is significantly faster than the time required for 
spawning the threads on the individual SPEs. Results are 
shown in Tables 2 and 3. 

Number of data points per row tSIZE 2048

Number of available SPEs nSPES 6 

Number of m  values per SPE vSIZE 8

Total number of m index values nSPES×vSIZE 48 

Padded size of m domain PADDED_vSIZE 256 

Number of n index values  hSIZE 8

Table 1. Parameters used for testing the distributed 
FFTs on the CELL.

myTRIALS Total time Per data block 

100 4.48 s 44.80 ms 

1000 33.33 s 33.33 ms 

10000 321.92 s 32.30 ms

Table 2. Timing results. The number of trials denotes 
the effective number of data blocks processed within the 
stated time.  

Table 3. Aggregate time spent on the SPEs and 
the PPE during execution of the FFTs sequence.  

6 Conclusions 

The results in Table 3 show that the PPE summation 
requires more time than the actual computation on the 
SPEs. In the future, we will use inter SPE communication 
procedures, in conjunction with a full implementation of the 
possible computation-communication overlap. 

The primary innovation resulting from the present effort is 
the development of a massively parallel computational 
scheme that avoids altogether the BF corner turning stage. 
We presented details of this scheme in the context of the 
IBM CELL multicore processor. However, the underlying 
paradigm is general, and could readily be specialized to 
other multicore architectures. The algorithms were pro-
grammed in enhanced C for multicore processing.  The 
recent release by IBM of the XLF high-performance 
compiler for multicore acceleration opens, via mixed 
language (C and FORTRAN) programming (using inter-
language calls allowed by IBM’s XLC and XLF compilers) 
an optimal framework for ultra fast future implementations. 
Such a framework would fully exploit the intrinsic array 
language, compiler optimization and numerical capabilities 
of FORTRAN in conjunction with the DMA and system 
capabilities of C. 
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myTRIALS Total 
time 

(s) 

On the SPE 
 s   (percent) 

On the PPE 
s   (percent) 

100 4.51 2.71 (60) 1.80 (40) 

1000 33.50 16.22 (48) 17.28 (52) 

10000 322.72 150.48 (47) 172.23 (53)
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