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Nowadays, the use of resonant acoustic liners is one of the most efficient ways to reduce aircraft engine noise, 
especially fan noise which can reach more than 140 dB. The purpose of the work introduced herein is to revisit 
the normal incidence acoustic absorption of these liners: 2D planar direct numerical simulations (DNS) are 
performed with the CEDRE code, a Navier-Stokes equations solver developed by Onera, to evaluate the acoustic 
dissipation of a Helmholtz resonator. The response of the resonator is computed for several incident sound 
pressure levels from 80 to 150 dB. It is checked that for the lowest SPLs, the acoustic absorption is based on 
viscous wall friction and radiation through the resonator opening: these mechanisms are linear. For the highest 
SPLs however, a substantial part of the absorption is provided by nonlinear effects, generated by the shedding of 
micro-vortices at the opening mouths which converts the acoustic energy in kinetic rotational energy, eventually 
dissipated into heat by molecular viscosity. For every simulated case, the efficiency of the dissipation is 
quantified by the calculation of the absorption coefficient. The weight of the nonlinear mechanisms on the global 
absorption is discussed, especially for the “intermediate” SPLs.  

1 Introduction 

Several techniques are commonly used today to reduce 
aircraft engine noise: direct action on the source, 
improvement of the directivity, acoustic absorption by 
porous or resonant liners. In this latter case, liners, such as 
perforated honeycomb liners, are put in the inlet nacelle to 
reduce the fan noise, a tone noise which can reach more 
than 140 dB and which is critical for the take-off and 
landing phases because of its directivity. 
In order to improve the acoustic treatment efficiency, it is 
crucial to get a full understanding of its absorption 
mechanisms. Most of current prediction models rely on 
empirical or semi-empirical concepts, and are not totally 
reliable. Acoustic performances of liners are indeed greatly 
affected by nonlinear effects, as much due to high sound 
pressure levels (SPL) as to the interactions between sound 
and grazing air flows. The purpose of the work introduced 
herein is to evaluate the first one of these two nonlinear 
effects, by simulating the response of a Helmholtz resonator 
to harmonic acoustic waves at several SPLs. 

2 Properties of the 2D resonator 

2.1 Computation domain 

Our computation domain, as shown in Fig.1., is a normal 
incidence impedance tube. 

 
Fig.1. The computation domain. 

Acoustic waves are propagated in a 520 mm × 12 mm tube, 
and impact the resonator. The tube length is chosen so that 
the resonator is more than one wavelength away from the 
inlet boundary at the lowest excitation acoustic frequency 
(which will be specified in 2.2). Its height cuts off the 
higher order modes at the chosen frequencies, thus allows 
only plane waves propagation. 

The openings of perforated honeycomb liners are usually 
very small. Therefore, even if it might lead to numerical 
issues, such as long computational times, the size of the 
resonator studied herein is the one of a typical industrial 
liner: a = b = 0.8 mm; d = 30 mm; l = 12 mm. 

2.2 Theoretical resonance frequency 

Given the dimensions of the hole, it is classically assumed 
that the air flow is incompressible in the resonator opening; 
moreover, the continuity of pressures and the conservation 
of volume fluxes at the opening / cavity interface are 
assumed. Under these assumptions, the resonator reactance 
is given by the simplified line impedance theory [1]: 
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b, a, l and d are defined in Fig.1., ρ is the density of air, c 
the speed of sound, k the acoustic wave number, and Δb the 
end correction at the resonator mouth. The adaptation of 
Rayleigh’s [2] three-dimensional theory to a 2D geometry 
gives: 
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Fig.2. shows that the annulment of the resonator reactance 
happens at 1.7 kHz. This frequency is the Helmholtz 
resonance frequency (fH).  

 
Fig.2. Time variation of the resonator reactance. 

Maximum absorption is expected for fH. In this paper, three 
acoustic frequencies are chosen: the Helmholtz frequency 
(1.7 kHz), the quarter-wave frequency, exclusively 
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depending on the depth of the resonator (fλ = 2.83 kHz), 
and an arbitrarily chosen frequency (f0 = 1.0 kHz). 

3 Computational model 

3.1 Grid design 

The direct numerical simulations are carried out with the 
Onera CEDRE code. The governing equations are the 
compressible Navier-Stokes and energy equations: 
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Initially, the fluid is at rest, and characterized by the 
following physical properties: P = 101,198 Pa; T = 288 K. 
The acoustic excitation in the duct inlet is modelled by 
sinusoidal varying mass and energy fluxes, assigned to the 
first row of rectangular mesh elements. The inlet wall is 
non-reflective; the other walls are set adiabatic.  
The choice of an explicit Runge-Kutta 2 time integration 
scheme considerably reduces numerical dissipation. 
However, the mesh must be refined enough to enable the 
propagation of acoustic waves. The tube is meshed with 
triangles of height 0.8 mm, at the rate of respectively 250, 
150 and 425 mesh nodes by wavelengths for fH, fλ and f0. 
Around the resonator opening, an even more refined grid is 
required, since the dissipation mechanisms have to be 
properly simulated and observed. Fig.3. shows the six mesh 
areas of the grid inside the resonator.  

 
Fig.3. Mesh grid inside the resonator. 

Particular attention is paid to the flowfield in the opening. 
As long as it remains linear, the oscillatory air flow through 
the slit is expected to be linear, and characterized by a 

Stokes viscous boundary layer, the thickness of which is 
given by [3]:  

 
fπ

νδ =  (7) 

where ν is the air kinematic viscosity. In order to get a fine 
resolution, the opening walls are meshed with 0.008 mm 
side squares: it represents 5 mesh nodes by layer thickness 
for the most critical case, that is to say for fλ (δ = 0.040 
mm). Outside of the viscous layer, area 1 is meshed with 
triangles of height 0.008 mm. Consequently, the opening 
grid includes 10,000 mesh elements over all. The five other 
areas are less refined: Δxarea 2 = 0.02 mm; Δxarea 3 = 0.04 
mm; Δxarea 4 = 0.10 mm; Δxarea 5 = 0.40 mm; Δxarea 6 = 0.80 
mm. Between x = 490 mm and x = 520 mm, on the left of 
the resonator mouth, the grid is exactly the same, so that the 
global computation domain is meshed with about 200,000 
mesh cells. 

3.2 Choice of the computation time step 

The time step is constant for the whole geometry. It is fixed 
by the smallest size mesh, as the stability CFL (Courant-
Friedrich-Lewy) condition requires. The CEDRE code 
explicit RK 2 time integration scheme needs a CFL inferior 
to 0.5. Thus, the chosen step time is Δt = 10-8 s. 

4 Study of the effect of SPL on 
acoustic dissipation 

Eighteen direct numerical simulations are performed, at the 
three chosen frequencies, and for six sound pressure levels: 
80, 110, 120, 130, 140 and 150 dB. This large panel of 
SPLs should enable us to identify the different dissipation 
mechanisms of the resonator, and to highlight the transition 
between linear and nonlinear effects. For every studied 
case, the absorption coefficient is calculated, in order to 
quantify the efficiency of the acoustic dissipation. 
Particular attention is paid to the weight of nonlinear 
mechanisms on the global absorption. 

4.1 Acoustic dissipation at “low SPL” 

For the 80 dB sound pressure level, it is checked that the air 
flow is laminar and that it oscillates in the opening at the 
incident acoustic frequency. The longitudinal velocity 
profile in the opening (along x = 520.4 mm) at the 
beginning of a cycle and at the end of the first quarter of it, 
is provided in Fig.4. The same profile is observed for every 
frequency, the thickness of the boundary layer and the 
values of velocity varying with f. 
A Stokes viscous layer appears along the walls. Based on 
the profile provided in Fig.4., its thickness is in good 
agreement with the analytic model (δ ≈ 0.050 mm). 
Obviously, the values of longitudinal velocity are really 
low. Over a quarter of period, the x-velocity in the center of 
the slit varies between 0.004 m/s and 0.018 m/s. In the 
layer, maximal values do not exceed 0.020 m/s. 
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Fig.4. Instantaneous x-velocity in the opening (x = 520.4 
mm). SPL = 80 dB; f = 1.7 kHz. Solid line: t = t0; dashed 

line: t = t0 + 1/(4.f) 

These characteristics of the flowfield are confirmed by 
Fig.5. and Fig.6 which respectively provide the norm of the 
instantaneous velocity vector and streamline pattern around 
the opening. 

 
Fig.5. Norm of instantaneous velocity vector around the 

opening. SPL = 80 dB; f = 1.7 kHz 

 
Fig.6. Instantaneous streamline pattern around the opening. 

SPL = 80 dB; f = 1.7 kHz. 

The profiles of the instantaneous velocity and streamline 
pattern through the resonator opening are characteristics of 
the classic dissipation mechanisms of viscous wall friction 
and acoustic radiation. 

4.2 Acoustic dissipation at “high SPL” 

For both 140 and 150 dB sound pressure levels, the air flow 
is not laminar anymore. As Tam describes it in previous 
studies [4, 5, 6], and as it can be seen in Fig.7. and Fig.8., 

micro vortices are shed on each side of the resonator 
mouth: these vortices are either attached vortices, internally 
generated along the opening walls, or free vortices, 
externally generated at the opening corners. Free vortices 
then merge in counter-rotating pairs and move away from 
the resonator.  

 
Fig.7. Norm of instantaneous velocity vector. SPL = 150 

dB; f = 1.7 kHz 

 
Fig.8. Instantaneous streamline pattern. SPL = 150 dB; f = 

1.7 kHz 

The shedding of vortices globally remains periodic, and it is 
found that the shedding frequency is the very incident 
acoustic frequency. However, the instantaneous velocity 
profile is ultimately quite unpredictable. 
The instantaneous flow velocity is much higher, almost 
reaching a 0.15 Mach number in the opening. The maximal 
rotational velocity of the micro vortices is high too (about 
0.05 Mach number). 
A new dissipation mechanism is pointed out: the 
conversion of the acoustic energy in kinetic rotational 
energy, eventually dissipated into heat by molecular 
viscosity.  

4.3 Acoustic dissipation mechanism at 
“intermediate SPLs” 

The 110, 120 and 130 dB sound pressure levels may be 
regarded as “intermediate” SPL. It is found that no vortices 
are generated at 110 and 120 dB. Though acoustic 
velocities are quite higher, the air flow remains laminar and 
the streamline pattern is exactly the same than the 80 dB 
one. 
Micro vortices only appear at 130 dB. However, as shown 
in Fig.9. and Fig.10., they are not shed away from the 
opening: on the contrary, they remain confined at the 
resonator corners. The velocities are much weaker than 
those observed at 140 and 150 dB (no more than 5 m/s). 
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Fig.9. Norm of instantaneous velocity vector around the 

opening. SPL = 130 dB; f = 1.7 kHz 

 
Fig.10. Instantaneous streamline pattern around the 

opening. SPL = 130 dB; f = 1.7 kHz 

4.4 Absorption coefficient calculation 

Depending on the sound pressure level, the absorption 
coefficient of the Helmholtz resonator is to be calculated 
differently. Numerical sensors are placed in the duct, so that 
the linearity of the time pressure signals is checked. As long 
as they remain linear, the absorption can be quantified with 
the two-microphone transfer function technique (i.e. the 
normal incidence Kundt tube method). For several pairs of 
sensors, the time pressure signals are fitted by sine curves 
with the linear least squares fitting technique; once the 
“pimax×sin(ωt+ϕi)” look-alike equations are found, the phase 
difference Δϕ and the ratio between the maximal 
amplitudes are calculated. It then leads to the transfer 
function hij (Eq.(8)), and ultimately to the reflection and 
absorption coefficients r and α (Eq.(9)).  
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xi is the distance between the resonator and the most distant 
sensor, and s the distance between the two sensors. 

As expected, the 80 dB time signals are linear: they are 
perfectly fitted by sine curves, with the linear least squares 
fitting technique. The 110 and 120 dB signals happen to be 
exact multiples of the 80 dB ones, which sets their linearity. 
Thus, the two-microphone transfer function method is valid 
for these three SPLs. Theoretically, given that the ratio 
between the maximal amplitudes of the two sensors and the 
phase difference remain constant for these SPLs, the 
absorption coefficient is expected to remain constant. 
As it was also expected, the highest studied SPLs (140 and 
150 dB) time pressure signals are definitely nonlinear so 
that the two-microphone transfer technique is now 
irrelevant. The effects of nonlinearity, as shown in Fig.11., 
are a non constant amplitude, an alteration of the sinusoidal 
shape, and a substantial phase difference with the 
theoretical linear time signal. 

 
Fig.11. Instantaneous pressure. Solid line: SPL = 150 dB; f 
= 1.7 kHz; line with crosses: theoretical linear time signal 

for the same SPL and frequency 

For these high SPLs, the approach chosen in this paper is to 
split the global dissipated energy into a linear contribution 
Elinear and a nonlinear one Enonlinear, due to vortex shedding. 
The very principle of linearity of the first contribution 
enables the calculation of Elinear from the incident energy 
(Eq.(10)) and the absorption coefficients found at 80 dB 
(Eq.(11)). 
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 incidentdBlinear EE ×= 80α  (11)  

For the second contribution, Enonlinear, the average kinetic 
energy K associated with a shed micro vortex, defined by 
its radius R and its rotational velocity vθ, is to be calculated 
(Eq.(12)), following Tam’s method [4, 5, 6]. 
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The nonlinear energy is then given by Eq.(13):  

 
T
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with N the number of vortices per shedding period T 
(which actually is the acoustic waves period). 
The ratio between the sum of both dissipation energies and 
the incident energy eventually leads to the absorption 
coefficient (Eq.(14)).  
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The nonlinearity of the 130 dB time pressure signals is not 
as obvious as it is for the 140 and 150 dB cases. However, 
as observed in the previous paragraph, the 130 dB 
dissipation also relies on the vortex shedding mechanism. 
Therefore, the absorption coefficient is calculated with the 
linear / nonlinear splitting. 

4.5 Efficiency of the dissipation 

Table 1 and Table 2 provide the results of the eighteen 
direct numerical simulations. The absorption coefficients 
are calculated as explained in 4.4. 

 80 dB 110 dB 120 dB 

1.0 kHz 0.12 0.12 0.12 

1.7 kHz 0.26 0.26 0.26 

2.83 kHz 0.11 0.10 0.11 

Table 1 Absorption coefficients at “low” SPLs 

For a given frequency, α does not vary with the SPL. The 
values are quite weak: the linear dissipation mechanism is 
not very efficient. No more than one quarter of the incident 
acoustic energy is dissipated. 

 130 dB 140 dB 150 dB 

1.0 kHz 
αnonlin = 0.08 
αglobal = 0.20 

αnonlin = 0.13 
αglobal = 0.25 

αnonlin = 0.19 
αglobal = 0.31 

1.7 Hz 
αnonlin = 0.18 
αglobal = 0.44 

αnonlin = 0.32 
αglobal = 0.58 

αnonlin = 0.44 
αglobal = 0.70 

2.83 kHz 
αnonlin = 0.06 
αglobal = 0.17 

αnonlin = 0.11 
αglobal = 0.22 

αnonlin = 0.17 
αglobal = 0.28 

Table 2 Nonlinear and global absorption coefficients at 
“high” SPLs 

It is checked that the absorption coefficient of the 
Helmholtz resonator significantly increases when vortices 
are shed, as shown in Fig.12. which provides the variation 
of the absorption coefficient with the sound pressure level, 
for every frequency. For the 150 dB SPL, at the Helmholtz 
frequency, which gives the best absorption frequency, 70 
per cent of the incident acoustic energy is dissipated. The 
absorption is three times more efficient than it is for a low 
SPL. 
It is also noticed that the ratio between the nonlinear 
contribution and the global absorption increases with the 
sound pressure level. The part of incident energy dissipated 
through the opening walls by viscous friction and acoustic 
radiation is then quite weak, but still remains significant. 
The results quantifying the efficiency of the vortex 
shedding dissipation mechanism in comparison with the 
linear dissipation mechanisms are in good agreement with 
Tam’s two-dimensional results. However, the value of the 
maximal absorption coefficient (0.70 for SPL = 150 dB and 
f = fH) seems to suggest that the Helmholtz frequency might 
not be the exact “absolute” maximal absorption frequency. 
On the other hand, it is definitely not the quarter-wave 
frequency either. More direct numerical simulations, for 
other acoustic frequencies, are obviously required. 

 
Fig.12. Variation of absorption coefficients with sound 

pressure levels. Solid line: f = 1.7 kHz; dashed line: f = 1.0 
kHz; dotted line: f = 2.83 kHz. 

5 Conclusion 

The nonlinear dissipation mechanism of vortex shedding is 
obviously crucial in the global acoustic absorption of 
resonant liners such as Helmholtz resonators. Further 
studies will follow in order to bring better understanding of 
these non linearities. We then intend to compare the present 
results with three-dimensional ones. Eventually, the second 
kind of nonlinear effects, that is to say the interaction 
between sound and grazing air flow, will be studied. 
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