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Steel multi-wire cables are widely used in civil engineering as load-carrying members. The basic element of
these cables is usually a simple straight strand made of a straight core and one layer of helical wires. Several
difficulties arise in the understanding of guided ultrasonic waves in such structures, partly due to the helical
geometry and the inter-wire coupling effects. In the context of non-destructive evaluation, this work aims at
theoretically investigating the propagation of elastic waves in helical waveguides. A numerical method is chosen
based on a semi-analytical finite element technique that relies on a specific non-orthogonal curvilinear
coordinate system. This system is shown to be translationally invariant along the helix centerline so that a spatial
Fourier transform can be explicitly performed along the axis and the problem is reduced to two dimensions. It is
shown that the method can be readily used for the analysis of helical structures by considering the special case of
no curvature. Results for single straight and helical wires are first computed in order to validate the approach. A
dispersion analysis for a seven wire strand with simplified contact conditions is then realized.

1 Introduction

In civil engineering, steel mutli-wire cables are widely
employed. The basic element of these cables is usually a
simple straight strand made of a straight core and one layer
of helical wires. Mainly because of corrosion, material
degradation of steel may result in fractures of wires. A
structural health monitoring approach based on non-
destructive evaluation methods is strongly needed in order
to prevent such failures. Ultrasonics is one of the most
popular techniques. It consists in analyzing the propagation
of elastic guided waves, which are known to be multimodal
and dispersive. For a better physical understanding of these
complex effects, some theoretical models are often
required.

Some recent experimental studies of multi-wire strands
have been realized by Kwun et al. [1], Beard et al. [2] and
Rizzo et al. [3] pointing out the fact that the cylindrical
model approximation cannot accurately predict propagation
inside multi-wire strands. In fact, the theoretical
understanding of guided ultrasonic waves in multi-wire
strands is complicated by the helical geometry of peripheral
wires, the inter-wire coupling and contact effects, and the
presence of applied loads.

The goal of this paper is to address the first above
complicating effect, by proposing a numerical method
allowing the study of elastic guided waves inside a single
helical wire. It is shown that the proposed method can also
be readily used to study some general helical structures,
having both straight and helical wires. Inter-wire coupling
effects are included in the analysis through simplified
contact conditions.

In order to deal with complex geometry, some of the most
popular and efficient numerical techniques are based on
finite element (FE) methods. The so-called semi-analytical
finite element (SAFE) method is a first approach that has
been used to study uniform waveguides of arbitrary cross-
section — see for instance, Gavric [4], Hayashi et al. [5],
Damljanovic et al. [6]. Demma et al. [7] investigated
toroidal waveguides. Onipede et al. [8] extended SAFE
methods to study uniformly pretwisted waveguides along a
straight axis.

A second approach is based on the theory of wave
propagation in periodic structures from Floquet’s principle.
A review on the topic can be found in Mead [9]. Based on a
general theory presented by Mead [10], some periodic FE
approaches and procedures have then been developed — see
for instance Gry et al. [11], Mace et al. [12].

For modelling a single helical wire, which is a uniform
waveguide, both SAFE and periodic FE approaches can be

9852

applied. Treyssede [13] has recently proposed a numerical
procedure based on a periodic FE approach combined with
a specific helical mapping in order to arbitrarily reduce the
periodic cell length. In this paper, a SAFE method extended
to helical waveguides is developed. The weak variational
formulation is written in terms of a non-orthogonal
curvilinear coordinate system that is translationally
invariant along the helix centreline, so that a Fourier
transform can be explicitly performed. It is also shown how
the formulation can be readily used in order to analyse
multi-wire strands. As opposed to a periodic FE approach,
this approach explicitly takes into account the property of
translational invariance of helical waveguides. More
mathematical insight is somewhat gained and the problem
to be solved is reduced to two dimensions (hereby reducing
computational costs).

2 SAFE method

A linearly elastic material, small strains and displacements
and a time harmonic dependence are assumed. There is no
external force. The 3D variational formulation governing
elastodynamics is then given by:
[se"cedv—w’ [ psu’uay D
Q Q
for any kinematically admissible trial displacement field
ou. o€ denotes the wvirtual strain  vector
[6€,, O€y O€y; 20€, 25€,, 25¢€,] . Subscripts
i=1,2,3 are components in the considered coordinate
system, respectively denoted (x, y,s). C is the matrix of
material properties. p is the material density and 2 is the
structural volume. In the remainder of this paper, s will
denote the waveguide axis.

The strain-displacement relation can be written as follows:
e=(L,+L,0/0s)u 2

where L., is the operator containing all terms that do not
contain derivatives with respect to the axis s. Now we
further assume a dependence e, k being the axial
wavenumber. The problem is hence reduced from three to
two dimensions (from the volume (2 to the cross-section S
of the waveguide). Then, it can be shown that the FE
discretisation of Eq.(1) finally gives the following
eigenvalue problem:

(K, — ' M+ik(K,— K})+ kK, Ju=0 (3)

with the following elementary matrices:



K= N"L] CL N“ds, Ki=] N"L] CL,Nds
s° s

4
Ké=[ NLICL,N“dS, M*=[ pN'N¢ds @
s¢ S¢

The solution of Eq. (3) yields the propagation modes. At
fixed real k, the eigenproblem (3) is linear for finding w?.
This simpler approach is useful only if interest is restricted
to propagating modes in undamped systems. Given w and
finding £, the eigenproblem is quadratic. It can be recast
into a generalized linear eigensystem written for [u ku|"
in order to be solved by standard numerical solvers — see
Tisseur et al. [14] for instance.

3 Translationally invariant helical

coordinate system

In the previous section, we have assumed an ™

dependence. This is equivalent to perform a spatial Fourier
analysis in the s direction. This assumption indeed requires
that the physical system be translationally invariant. In
other words, this means that the cross-section of the
waveguide must not vary along s (condition 1), nor the
material properties (condition 2, which is assumed to be
satisfied throughout this work). Besides, the (x,y,s)
coordinate system must be so that s do not appear explicitly
in the coefficients of the equilibrium equations (s must only
appear through derivatives). Verifying this last condition
(condition 3) is somewhat more technical than the first two.

First, let us define the helix centerline curve. It can be
described by the following position vector in the Cartesian
orthonormal basis:

L

/

where [=vV(L°+4m*R’). R and L are respectively the
radius of the centreline in the (X,Y) Cartesian plane and the
helix step along the Z axis. The unit tangent, normal and
binormal vectors to the centreline are respectively obtained
from T=dR/ds and the Serret-Frenet formulae,
dTlds=k N and dN/ds=1tB—«T . Both the curvature
k=41*R/I* and the tortuosity T=2 L/I* are constant.

R(s)ZRcos(ZTns)eX—i-Rsin(zTTrs)ey—i- se,

)

Now, a new coordinate system is constructed from the
orthonormal basis (N, B, T) as follows:

X(x,y,5)=R(s)+xN(s)+yB(s) 6)

yielding the covariant basis

(g:,8,,8)=(0X/0x,0X/0y,0X/0s) (non-orthogonal).
It could be checked that the metric tensor, defined by
(g);=g:g,, does not depend on the third curvilinear
coordinate s. One consequence is that the coefficients of the
partial differential equilibrium equations are not dependent
upon s either (condition 3 is satisfied). For clarity, L, and
L, are explicitly given by:
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ol ox 0 0
0 oloy 0
2 2
L =| T x—k(l—kx) Ty —KTy )
¥ oloy 0lox 0
—1y0/0x  —T+Tx0/0x Kk+(1—kKx)0/0x
T—Ty0l0y Tx0/0y (1—kx)oloy
and:
0 0 0
0 0 0
_|—Tty tx l-kx
1 0 0
0 1 0

For Egs.(3)-(4), (7) and (8) to hold, it must be outlined that
covariant components have been chosen for € while
components with respect to (N, B, T) have been preferred
for u . Also, the components of C should be understood
as contravariant — for more details, see Treysseéde [15].

Now, let us consider a single helical wire of circular cross-
section. The cross-section obviously does not change along
the helical axis s (condition 1 is fulfilled) so that the
proposed approach is valid. The analysis of a straight wire
can also be readily performed, the cylinder corresponding
to the special case k=1=0.

However, a question arises about the choice of the invariant
coordinate system to be used when considering helical
structures made of both straight and helical wires. Of
course, the choice k=7=0 (resp. k#0,7#0 ) cannot be
applied because condition 1 would not be satisfied for
helical (resp. straight) wires.

The adequate system is indeed given by k=0 ( R=0),
T=2m/L, corresponding to a rotating coordinate system
along the Z axis ( s=Z). With this system, a central
straight wire (cylinder) has an invariant circular cross-
section along Z (“a twisted cylinder remains a cylinder”).
Furthermore, the cross-sections of peripheral helical wires
do not change either along Z, although their shape is not
circular any more in the (x,y) plane. These statements will
be verified in Section 4.1. Note that such a rotating system
coincides with the one proposed by Onipede et al. [8] for
the analysis of twisted waveguides.

4 Numerical results

The material is assumed to be isotropic, with no material
damping. For a steel wire, a typical value of 0.30 will be
chosen for the Poisson coefficient. We consider waveguides
with a circular cross-section of radius a. The
adimensionalized angular frequency is given by walc,, ¢,
denoting the shear velocity. Six-node triangles meshes will
be used. FE computations are held at fixed real
wavenumbers k.

4.1 Dispersion analysis of single wires

A single straight wire (cylinder) is first considered ( k=0).
Figure la exhibits the cross-section FE mesh used. Both
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cases T=0 (reference solution) and T7#0 are computed.
In order to check the adequacy of the rotating system, we
choose a high tortuosity Ta=0.5 (high rotating rate).
Figure 2 exhibits the dispersion curves for both cases.
Though strongly different, one must be careful when
interpreting results: wavenumbers of flexural modes F(m,n)
are modulated by *maxa because of the system rotation,
while those of compression and torsional modes are left
unchanged — see Onipede et al. [8] for further explanations.
Hence, both results yield the same physical phenomenon.
This is clearly outlined by Fig.3 giving the energy velocity
vs. frequency (same curves obtained for both straight and

rotating systems).
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Fig.1 Cross-section FE meshes in the (X, Y) plane for: (a)
the cylinder, (b) the helical waveguide ¢=45° when a
rotating system =0 is used (cross-section centred at

(X, Y)=(2a,0)).
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Fig.2 Cylindrical waveguide. Plot of frequency vs.

wavenumber. Black lines: rotating system, gray lines:

Cartesian system.

v it

Fig.3 Cylindrical waveguide. Plot of energy velocity vs.

frequency. Black lines: rotating system, gray lines:
Cartesian system.

Now, a single helical wire is considered. The helix radius is

R=2a. A strong helix lay angle
¢=tan"' (2w R/L)=1/4 is chosen, yielding
(ka=0.25,7a=0.25) for the helical system and
(ka=0,Ta=0.5) for the rotating system. The computed
solution given by the helical system, for which the cross-
section is circular (same as Fig. 1a), is considered as the
reference solution (see Refs. [13, 15]). Fig 1b exhibits the
cross-section mesh that must be used together with the
rotating system ((X,Y) plane cut of the helical waveguide).
Figure 4 exhibits the dispersion curves computed for both
coordinate systems. Here again, one must be careful when
comparing results: in order to transform results from the
curvilinear s axis to the Cartesian Z axis, wavenumbers k&
obtained from the helical system must be multiplied by the
ratio //L . As can be observed in Fig 4, no difference are
found between both systems, which demonstrates the
adequacy of the rotating system. Note that the differences
previously observed for the cylinder between flexural
modes do not occur here because both coordinates systems
rotate with the same rate along the Z axis.

i i i L i i i i
o 0s 1 1.5 Z 2.5 3 3.8 4 4.5 =
ka

Fig.4 Helical waveguide ( ¢p =45 °). Plot of frequency vs.
wavenumber. Black lines: rotating system, gray lines:
helical system.

4.2 Dispersion analysis of a seven-wire
strand

The wave modes propagating inside a typical seven-wire
strand are now studied. Stick contact conditions are
assumed for simplicity (no slip, no separation and no
friction are considered). a denotes the central wire radius
(a=2.5mm). Peripheral wires radii are chosen as 0.97a, with
a lay angle ¢=7.5° (typical for civil engineering 6+1
strands). The coordinate system to be used is
(ka=0,Ta=0.0668) . The FE mesh is given in Fig. 5.
Figures 6 and 7 exhibit the dispersion curves for the
adimensional frequency range [0;2]. Due to a strong inter-
wire coupling, one observes a far more complex behaviour
than for single wires. The most striking phenomenon is the
cut-off of the fastest mode (compressional-like L(0,1)
mode) around wa/c,=0.6 | corresponding to 120kHz as
experimentally observed by Kwun et al. [1].
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Fig.5 Cross-section FE mesh in the (X)Y) plane for the
seven-wire strand ( $=7.5°).
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Fig.6 Seven-wire strand ( ¢=7.5°). Plot of frequency vs.
wavenumber.

Fig.7 Seven-wire strand ( ¢=7.5°). Plot of energy velocity
vs. frequency.

5 Conclusion

Elastic wave propagation inside helical wires has been
analysed through a SAFE method based on a translationally
invariant helical coordinate system. It has been shown that
the special case of no curvature yields an adequate
coordinate system to be used for the analysis of helical
structures made of a straight core and peripheral helical
wires. Dispersion inside a typical 6+1 strand has then been
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investigated by assuming stick contact conditions. A far
more complex behaviour than for single wires has been
observed due to a strong inter-wire coupling. Besides, a
bandcut zone is found for the fastest compressional-like
mode, centred near 120kHz, which seems to coincide with
experimental results mentioned in the literature.
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