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Large air springs can be limited in their performance as isolation devices by cavity resonances. The analysis of 
prototype springs with irregularly shaped cavities requires knowledge of the resonant frequencies as well as the 
frequency response over all frequencies of interest.  Computational fluid dynamics (CFD) simulations can 
provide such knowledge, including phase.  The simulation is unaffected by ambient noise and sensor sensitivity, 
major experimental concerns with such a highly isolated system.  Unlike analytical methods, complex 
geometries can be modeled.  The methodology is illustrated in the present talk with three different chambers in 
2D and 3D. A chamber wall section, representing a piston, is moved at a sinusoidal displacement with constant 
frequency. Measurement of the magnitude and phase from the resulting sinusoidal force on this surface provides 
one point of a bode plot.  Many simulations are run, each at a different frequency.   The null and resonant 
frequencies are readily apparent.  Comparison with analytical predictions for simple geometries validates this 
technique. The influence of inserted porous membranes on the frequency response is explored.  Simulations 
provide information to design appropriate membranes and their placement within the cavity, substantially 
increasing the range of frequencies over which the air spring has acceptable behavior. 

1 Introduction 

High precision air springs must carry large loads and must 
have low spring-mass resonant frequencies, and thus low 
spring constants.  A low spring constant requires a large air 
chamber.  As an air chamber increases in size, it has lower 
resonant and null acoustic frequencies, which may be low 
enough to be in the control band of a typical control system 
(e.g. a stabilization system preventing the air spring piston 
from moving in the x or y direction as it moves up and 
down in z).  It is important to understand the location of the 
acoustic resonant frequencies during the design process.  
CFD simulations can provide this information, even for 
geometries that are too complicated for analytical models.   
Membranes can be added to the geometries to increase the 
resonant frequencies without appreciably affecting the low 
spring constant.  At low velocities or frequencies, the air 
can easily pass through the membrane.  At high 
frequencies, the membrane acts as a rigid wall and 
effectively makes the chamber smaller, increasing the 
resonant frequencies.  The membrane has to be designed 
correctly, so that the piston amplitude response remains at 
the static value for a wide frequency range.    

2 Theory 

 

 
 
 
 
 

Consider a simple cylinder (shown in Figure 1) of length L 
with a piston of area A moving sinusoidally at x=0 with an 
amplitude (peak displacement) of D.  The cylinder is filled 
with a fluid that has a density ρ and speed of sound c. 
The pressure in the cylinder due to the moving piston is a 
function of both the spatial position and the time. 
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Substituting Eq.(1) into the wave equation gives the 
Helmholtz Equation. 
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The simplest solution to this ordinary differential equation 
is  
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There are two unknowns in this equation, A and B.  To 
solve for them, boundary conditions must be used.  The 
displacement of the air in the cylinder is  
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Euler’s equation relates this to pressure. 
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At the end wall (x=L), the air does not move.  At the piston 
end (x=0), the air moves with the piston, which has an 
amplitude D.  This gives the boundary conditions: 
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This gives A & B as: 
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The pressure in the cylinder is: 
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The force on the piston (x=0) from the air when the piston 
is fully down ( 1)cos( =tω ) is: 
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There are three characteristic features to note with regards 
to this equation: quasi-static approximation, resonant 

Figure 1: Simple cylinder with piston end cap 
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frequency, and null frequency. The quasi-static 
approximation of the force is found when ω is near 0.  This 
results in a force of DL

Ac2ρ .  The spring constant for such 

a system is L
Ac2ρ , equivalent to V

PA2γ .  The resonant 
frequency occurs when the denominator goes to zero, or 

0)/tan( =cLω .  The lowest non-zero frequency at which this 
occurs is when πω =c

L , or L
cf 2= .  A null (i.e. no 

reaction force with a sinusoidal displacement of a certain 
frequency) will occur when the denominator goes to 
infinity.  This occurs when 2

πω =c
L , or L

cf 4= .    

Adding a porous membrane to the chamber affects the 
system in two ways.  First, damping is added, which causes 
the phase to rise more slowly, making the system 
significantly easier to control.  Second, the effective 
chamber size is reduced as a function of frequency.  At low 
frequencies, the entire chamber will participate in the 
system. At high frequencies the porous membrane acts as a 
wall, causing only part of the chamber to participate.   

A dimensionless constant can be defined:  d
ck αμ
ρ= , where 

α is the membrane resistance, c is the speed of sound, ρ is 
the density of the air, μ is the viscosity, and d is the 
thickness of the membrane.   

3 Representative Geometries 

Three representative geometries of increasing complexity 
were considered.  The first is a simple cylinder and was 
modelled only in 2D.  The second is a square spring with a 
protruding circular piston, a mid-plane slice of which is 
shown in Figure 2; this is modelled in 2D and in 3D and is 
compared analytically to a cylinder with the area of the 
piston and the height of the chamber to the upper piston 
level.   The third is a complex geometry modelled in both 
2D and 3D; Figure 2 shows the 2D geometry. 
In later simulations, membranes were added to these 
geometries at the dashed locations.  The pistons, shown in 
dark black lines, move in the direction indicated.  The 
membrane resistance, α, is varied in the simulations, with 
all other variables held constant giving a variety of k 
values. 
 
 

 

 
Figure 2: The three geometries considered: geometry #1, 
geometry #2, and geometry #3.   

4 Analysis Procedure 

The CFD software package FLUENT (www.fluent.com) is 
used to simulate the laminar, time-varying flow by finite 
volume solution of the unsteady Navier-Stokes equation. 
The solution procedure uses the SIMPLEC (Semi-Implicit 
method for Pressure Linked Equations – Consistent) 
algorithm for pressure-velocity coupling and the pressure 
discretization is based on the PRESTO! scheme. The 
density and momentum are computed by the second order 
upwind scheme which provides second order accuracy to 
the solution. Gravity was taken into account during the 
simulation, with the downward direction being so that the 
piston was on the upper side of the configuration. The fluid 
was air and was regarded as an ideal gas.  Thermal 
conduction was taken into account with the fluid being 
assumed to be isothermal. The solution was considered to 
have converged when the error residuals were reduced 
below four orders of magnitude from their maximum 
values.  
The oscillating velocity of the piston was prescribed to be   
v = A 2π f cos(2π f t), where A is the amplitude and is 
0.1mm. t refers to the time step. f is the oscillation 
frequency. This equation gives a piston displacement of 

)2sin( ftA π .  A variety of simulations are performed, 
each at a different frequency.  The simulation time step was 
set so that each cycle had 100 time steps. 
 The force on the piston is reported for each time step.  A 
sine is fit to the steady state portion of the force and is 
compared to the input displacement in both amplitude and 
phase.  Each simulation produces one point on a Bode plot. 

5 Simulation Results 

5.1 Geometry #1 

To illustrate how CFD techniques can be applied, a simple 
example is considered for which analytical results are 
available, this being a simple cylinder. Three sets of 
simulations were run in 2D for the cylinder geometry: no 
membrane, a weak membrane (5e9m-2, k = 0.2), and a 
strong membrane (1e10m-2, k = 0.4).  Figure 3 shows the 
Bode plot of the force on the piston as a function of 
frequency for each of the two membranes along with the 
no-membrane case.   

 

Figure 3: Bode plot of force on piston as a function of frequency, 
for two different membranes and no membrane 
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The simulation accurately predicts the null frequency of 
82Hz and the resonant frequency of 165Hz.   
The membranes contribute substantially to the design goal 
of raising the resonant frequencies outside of the range in 
which the system is intended to operate as a linear spring.  
The phase is smoother and higher for a broader frequency 
range, with the stronger membrane exhibiting this behavior 
more markedly.  The first null frequency is about double for 
the system with the membranes compared to the system 
without.  The effective chamber size appears to be changing 
with frequency when the membrane is present.   
Figure 4 shows the velocity as a function of the location 
along the center of the cylinder for all three systems at three 
different frequencies: 10Hz, 100Hz, and 200Hz:  10Hz is 
below the null frequency for all three systems; 100Hz is 
between the null and resonant frequencies for the no-
membrane system and below the null frequency for the 
membrane systems; and, 200Hz is after the resonance for 
the no-membrane system and is between the null and 
resonance frequencies for the membrane systems.   
The three systems show little difference at 10Hz, with the 
highest deviation shown for the strongest membrane.  At 
100Hz, the membranes keep the velocity of those systems 
roughly linear between the wall and the membrane.  The 
sinusoidal behavior only begins to occur above the 
membrane. At 200Hz, the velocity is negative in the 
chamber even as the piston velocity is positive for the 
original system but not for the system with the membranes. 
The velocity figures show further evidence that the 
membranes are reducing the effective size of the chamber at 
the upper frequencies.   

  

 
Figure 4: Velocity as function of location in chamber, for the two 
membranes and for no membrane, at 10Hz, 100Hz, and 200Hz 

5.2 Geometry #2 

Figure 5 shows the response of Geometry 1 as found by 2D 
and 3D simulations.  These results match the analytical 
theory, which showed first null, first resonant, and second 
null frequencies of 262Hz, 524Hz, and 786 Hz, 
respectively.  The differences between the 2D and 3D 
results can be attributed to different areas of the protruding 
part of the piston in 2D and in 3D.  Figure 6 shows the 
resonant and null frequencies of: (i) the analysis assuming a 
cylinder, (ii) the 2D simulations, and (iii) the 3D 
simulations. 

 
Figure 5: Frequency response of geometry #2 as found by 2D 
and 3D simulations 

Figure 6: Analytical, 2D simulation, and 3D simulation results 

Figure 7 shows the pressure in the chamber as a function of 
the location along a vertical line halfway between the piston 
and the edge of the chamber, for (i) the analysis assuming a 
cylinder, (ii) the 2D simulations, and (iii) the 3D 
simulations.  Each line on the graph corresponds to a 
different time step for one sinusoidal cycle.  The zero 
pressure values do not occur exactly at the piston (first 
nullity), halfway along the chamber (first resonance), or a 
third of the distance along the chamber (second nullity), 
because the piston protrusion into the center of the chamber 
changes the overall force on the piston.   
For the first nullity, the location of the smallest pressure is 
301mm, which corresponds to a frequency of 287Hz.   
For the resonance, the smallest pressure in the chamber 
occurs at 158mm.  The middle of the chamber (and thus the 
expected smallest pressure for the resonance) is at 162mm, 
only 2% higher than what actually happens.   
For the second nullity, the lowest pressure (first pressure 
node) in the chamber occurs at 103mm, and the highest 
(first pressure anti-node) at 235mm.  For a perfect cylinder, 
the lowest pressure in the chamber occurs at one-third of 
the chamber length, or 114mm, and the highest pressure 
occurs at two-thirds of the chamber length, or 228mm.  
These are off by 10% and 3%, respectively.  The second 
pressure node is not present inside the chamber; it is 
presumed that it would occur just outside the chamber.   
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Figure 7: Pressure as a function of location along a line for: (i) 
first nullity, (ii) first resonance, (iii) second nullity 

Four membranes were used in 2D simulations.  These 
membranes had resistances (1/m2) of 2e10, 5e10, 1e11, 
2e11.   Figure 8 shows the magnitude and phase results for 
all four membranes, as well as the original case.   

 
Figure 8: Frequency response of geometry #2 with and without 
porous membranes, from 2D simulations 

These results show significant improvement in frequency 
response over the unmodified chamber.  One recognizes 
three categories: membrane too weak (2e10m-2), membrane 
too strong (1e11m-2, 2e11m-2) and membrane about right 
(5e10m-2). 
For the weak membrane (2e10m-2), the force decreases at 
low frequencies, as in the original system.  The resonance 
frequencies remain at their original values.  This system is 
more damped than the original but nullities still occur.  
For the strong membranes (1e11m-2, 2e11m-2) and the 
about-right membrane (5e10m-2), the forces at low 
frequencies increase, unlike what occurs in the original 
system.  The stronger the membrane is, the higher the slope 
is at low frequencies.  The resonant/null frequencies are 
increased to the values expected for a chamber whose 
volume is that of the air above the membrane.  The system 
has a higher magnitude when the membrane is stronger, as 
if there were less damping with the stronger membrane.  
These observations all lead to the conclusion that the 
membrane behaves more like a rigid wall than a damper at 
these higher frequencies.   
For the about-right membrane (5e10m-2), the initial force 
stays constant (within 2dB) until 500Hz, compared to 

150Hz in the original system.  The nullities and resonances 
exhibit the most damping of any of the membranes and 
have the lowest overall magnitude. The k value is 
approximately 0.2. 
Two additional sets of 3D simulations have been 
performed, one with a weak membrane (5e10m-2) and one 
with a strong membrane (2e11m-2).  See Figure 9. 

 
Figure 9: 3D Results with original, weak (5e10m-2), and strong 
(2e11m-2) membranes 

Both the strong and weak membrane add damping to the 
system, effectively lowering the first null frequency and 
pushing the first resonant frequency higher.  These findings 
correspond with the 2D results.   
In 3D, the 5e10m-2 (weak) membrane reduces the first 
nullity but does not move it, the latter of which happened in 
2D.  In the 3D simulations the membrane was not of 
uniform thickness due to the unstructured nature of the 
simulation grid.  The 2D grid was structured, and its porous 
membrane had a uniform thickness.    
Figure 10 shows the results from 2D and 3D, each with a 
strong (2e11m2) and a weak (5e10m2) membrane. Note 
that the location of the nullity is different in 2D and 3D 
because of the different areas of the piston protrusion.  b 

 
Figure 10: Porous results, 2D & 3D membranes, weak (5e10m-2) 
& strong (2e11 m-2) 

A membrane with uniform thickness and resistance near 
5e10m-2 is best for a 5mm thick membrane.  This 
corresponds to a k value of 0.2.  Figure 11 shows results of 
the systems without a membrane and with the best 
membrane, for the 2D and 3D simulations. 
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Figure 11: Original and porous (5e10) results, 2D and 3D 

5.3 Geometry #3 

Figure 12 shows the frequency response from 10Hz to 
1000Hz for geometry #3 using both 2D and 3D simulations. 

 
Figure 12: Simulation results from geometry #3, 2D and 3D 

The 2D and 3D results match well.  The first nullity is at 
110Hz and the second at 249Hz.  The first resonance is at 
224Hz and the second at 450Hz. The effective length of a 
cylinder approximation can be found using L

cmf = , for 
appropriate values of the integer ratio m. .  Three of the 
four values agree within 3%.  
Table 1 shows the frequency values and characteristic 
chamber lengths.  Three of the four values agree within 3%.  

Table 1: Effective chamber length of geometry #3 based on 
frequencies from simulation 

Description Frequency 
(Hz) 

m Length 
(mm) 

First Nullity 110 1/4 784 
First 
Resonance 

224 2/4 
=1/2 

770 

Second 
Nullity 

249 3/4  1039 

Second 
Resonance 

450 4/4 
=1 

767 

 

There are three regimes of the system.  At lower 
frequencies, to approximately 50Hz, the system behaves 
like a spring.  Between approximately 50Hz and 600Hz, the 
system is dominated by acoustic resonance.  At upper 
frequencies, above approximately 600Hz, the system is 
dominated by viscous damping due to small channels. 
Figure 13 shows the results for two membranes, compared 
to the original system. 

 
Figure 13: Simulation results comparing both membranes with 
the system without the membrane 

The simulation results showed that the stronger membrane 
was the best.  This configuration moved the zero frequency 
as well as added damping to the system.  The weaker 
membranes simply added damping.  The weak membrane 
corresponds with a k value of 0.2.    

5 Conclusions 

High precision air isolation devices increase isolation 
performance when the chamber is large.  As chambers 
increase in size, characteristic acoustic frequencies 
decrease, causing problems with control systems and 
isolation.  CFD simulations provide significant information 
on the behavior of a system, even with complex geometry 
that cannot be easily modeled analytically.  Well designed 
membranes added to the system provide significant 
benefits, extending the frequency range of the static region 
by over 200% and decreasing the magnitude of higher 
resonances.   
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