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In the literature, the coupled wavenumbers in flexible-walled acoustic waveguides have been found mainly
using numerical methods for a fixed set of parameters. These solutions, although useful, do not continu-
ously track the coupled wavenumbers as the fluid-loading parameter is varied from small to large values.
Such a continuous tracking is possible by applying the asymptotic methods to the coupled dispersion
relation. Analytical formulae for the coupled wavenumbers can also be found. In this work, we present
a consistent, unified and physically insightful view of structural acoustic coupling in the context of a
planar structural-acoustic waveguide (with two different BCs), the axisymmetric and beam modes of a
fluid-filled circular cylindrical shell and finally a fluid-filled elliptic cylindrical shell. In all the five cases,
we use a single fluid-structure-coupling asymptotic parameter (μ). The regular perturbation method is
used to solve the coupled dispersion relation for small and large values of μ. The circular and the ellip-
tic cylinders necessitate the use of additional asymptotic parameters. A general trend in all systems is
that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with
increasing μ. Also, the wavenumber curves veer where the earlier uncoupled wavenumbers intersected.

1 Introduction

A significant amount of work has been carried out on the
dispersion characteristics of structural-acoustic waveg-
uides such as fluid-filled cylindrical shells and rectan-
gular waveguides. Earlier workers have found solutions
to these systems using numerical techniques and have
discussed various physical implications of the solutions
(such as mass or stiffness loading of one medium over
the other). There is now enough literature available
that a unified presentation seems required which can
highlight the common features of all such waveguide sys-
tems. In the present article we seek to achieve this goal
of presenting the common characteristics of structural-
acoustic waveguides using the method of asymptotics.

Usage of asymptotic methods in structural acous-
tics is common, though not widespread ([1, 2] to name
a few). In asymptotic methods, we seek an approx-
imate analytical solution to an otherwise analytically
intractable problem (for example, transcendental equa-
tions, nonlinear differential equations, etc.). The prob-
lem though intractable, is in some way close to an an-
alytically solvable one. Mathematically, the problem
involves a parameter (called the asymptotic parame-
ter) which if set to zero can lead to closed form solu-
tions. The reduced problem obtained by setting the
asymptotic parameter to zero is called the unperturbed
problem. We thus seek solutions in the form of per-
turbations to the solutions of the unperturbed prob-
lem. The solution so obtained is increasingly accurate
as the asymptotic parameter approaches zero (see [3]
for further discussion). Physically, the method reveals
the phenomenon involved as a correction over a better-
understood simpler process. Further, the first order cor-
rection term captures the main difference between the
two problems.

Using asymptotic methods, Crighton had established
that the dynamics of an infinite plate submerged in an
unbounded acoustic fluid can be approached as a correc-
tion to the well-known in vacuo plate dynamics (see [1]
and the cross-references therein). Crighton’s alternative
asymptotic viewpoint on this subject was illuminating.
We have extended Crighton’s ideas in our recent works
on structural acoustic waveguides [4, 5] and observed
certain common features of the coupled dispersion char-
acteristics for various configurations (shown in figure 1).
We wish to present these in this article. Specifically,
we show that under suitable conditions, the coupled
wavenumbers of these systems (despite their geometrical

differences) may be obtained as corrections to the sim-
pler cases of (1) the in vacuo structural wavenumber, (2)
the wavenumber of the rigid-walled acoustic cut-ons and
(3) the wavenumber of the pressure-release acoustic cut-
ons. As the geometry gets progressively complicated, we
introduce asymptotic parameters which reduce the new
problem to a correction over the previous one. For the
geometries considered, this brings in an alternative uni-
fied asymptotic view-point which is physically insightful.

2 Two dimensional waveguide

As shown in figure (1a), a two dimensional structural
acoustic waveguide consists of a flexible plate loaded
with a finite fluid column. There are two boundary
conditions applicable at the top surface of the fluid,
namely:- (a) y-directional acoustic velocity vy(x, a) = 0,
(b) acoustic pressure p(x, a) = 0. The non-dimensional
coupled dispersion equations for these cases are given
by [4, 6]
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respectively.
Throughout the article, we shall denote the dimen-

sional frequency by ω, the dimensional wavenumber by
kx, the fluid density by ρf . In the above equations,
the non-dimensionalization has been done with respect
to the coincidence conditions (ωc is the coincidence fre-
quency and kc is the coincidence wavenumber). Thus,
we have the non-dimensional frequency Ω = ω/ωc, the
non-dimensional wavenumber ξ = k/kc, the non-dimens-
ional fluid loading parameter μ = ρfa/m (where m
is the mass per unit area of the plate) and the non-
dimensional fluid column height as λ = kca.

In the equations above, consider the condition μ = 0.
In this case, ξ =

√
Ω is a solution, which corresponds

to the in vacuo bending wavenumber of the plate. Fur-
ther, for equation (1a), we get additional solutions of the
form λ

√
Ω2 − ξ2 = nπ, n ∈ 0, 1, 2, . . .. These wavenum-

bers branches correspond to the wavenumbers of the
acoustic duct with symmetric wall conditions at both
y = 0 and y = a. Thus, the flexible plate behaves as
a rigid wall in this case. Similarly, for equation (1b),
we get solutions of the form λ

√
Ω2 − ξ2 = (2n + 1)π/2,

n ∈ 0, 1, 2, . . .. These wavenumbers branches correspond
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Figure 1: Structural acoustic waveguide systems studied in this article.

to the wavenumbers of the acoustic duct with antisym-
metric wall conditions at y = 0 and y = a. As, y = a, is
the free surface with p = 0, we may infer that at y = 0,
we have the rigid-wall condition. Thus, again the flexi-
ble plate behaves as a rigid wall. Now, with 0 < μ � 1,
solution to the equations (1) will be perturbations to the
wavenumber branches discussed above. Using the regu-
lar perturbation method, these solutions can be found.
The basic μ-based asymptotic series holds good for all
frequencies other than the coincidence frequencies (i.e.,
frequencies wherein the in vacuo structural wavenum-
ber equals the wavenumber of the rigid walled acoustic
duct). At the coincidence frequencies, alternative

√
μ-

based asymptotic expansions are found. All these ex-
pressions have been worked out in our previous works
[4, 6].

For the other extreme value of μ = ∞, we take the
transformation μ′ = 1/μ and consider μ′ = 0. The
coupled dispersion equation (1), rewritten in terms of
μ′, gives
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Using similar arguments as presented earlier, we in-
fer that with 0 < μ′ � 1 (viz. large μ), the flexible
plate behaves as a pressure release boundary. Analyti-
cal expressions for this case can be found using a regular
perturbation method [4, 6]. The results for all the above
cases are schematically presented in Figure (2).

In summary, the results obtained help us to con-
tinuously track the coupled wavenumber branches as
the fluid-loading parameter μ changes from small to
large values (indicated schematically in figure (2)). The
approach indicates how the coupled wavenumbers give
back the uncoupled wavenumbers for extreme values of
μ.

3 Circular cylindrical shell

The dispersion equation of a circular cylindrical shell (of
radius a, density ρs, shell thickness h, extensional wave
speed cL and Poisson’s ratio ν) in the nth circumferential
mode is given by [7]
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Figure 2: Schematic of the coupled wavenumber solu-
tions. Arrows indicate transition of solutions from small
μ to large μ.
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The elements of the matrix L are given by

L11 = −Ω2 + κ2 +
1 − ν

2
n2, L12 = L21 =

1

2
(1 + ν)nκ,

L13 = L31 = νκ, L22 = −Ω2+
1 − ν

2
κ2+n2, L23 = L32 = n2.

The term L33 is given by

− Ω2 + 1 + β2 `
κ2 + n2´2

for in vacuo ,

−Ω2 +1+β2 `
κ2 + n2´2− Ω2

χ

„
ρfa

ρsh

« »
Jn(χ)

J ′
n(χ)

–
with fluid.

In the above, χ =
√

Ω2 c2
L

c2
f
− κ2 and un, vn, wn are

the displacements in the longitudinal, circumferential
and the radial directions, respectively. In this section,
the non-dimensional frequency is given by Ω = ωa/cL,
the non-dimensional wavenumber is κ = kxa and β2 =
h2/12a2.

3.1 Axisymmetric mode

From the above equation, it is clear that for the axisym-
metric mode (viz. n = 0), the circumferential vibra-
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Figure 3: Wavenumbers of an in vacuo circular cylindrical shell with ν = 0.25, h/a = 0.05. (a) Bending wavenumber
below the ring frequency (Ω < 1). (b) Bending wavenumber above the ring frequency (Ω > 1). (c) Longitudinal
wavenumber.

tion is uncoupled from the vibration in the other two
directions. The radial and the longitudinal vibration
though are coupled. Further, the coupling (given by the
product of the off-diagonal terms L13 and L31) depends
directly on ν2. For practical problems, we know that
0 < ν2 � 1. This motivates an asymptotic series so-
lution for the bending and longitudinal wavenumbers in
terms of ν2. These solutions have been found in our ear-
lier work [5]. In figure (3), we present the comparison of
the asymptotic solutions with the numerical solutions.

From equation (3), the coupled dispersion equation
for the fluid-filled case is given by

|L| =

L︷ ︸︸ ︷(−Ω2 + κ2
) [ (−Ω2 + 1 + β2κ4

)
︸ ︷︷ ︸

B

R︷ ︸︸ ︷
J1(χ) χ︸︷︷︸

A

+ Ω2

µ=︷ ︸︸ ︷(
ρfa

ρsh

) P︷ ︸︸ ︷
J0(χ)

]
− ν2κ2J1(χ)χ︸ ︷︷ ︸

Poisson’s effect

= 0. (3)

From the equation above, it is clear that with ν = 0
and μ = 0, the solutions are the roots of the terms in-
dicated as L, B, R and A. The physical significance of
these roots is explained in Table (1). For 0 < ν, μ � 1,
a double asymptotic expansion (with both μ and ν as
the asymptotic parameters) yields closed form expres-
sions for the coupled wavenumbers. These have been
worked out in our earlier paper [5]. Analogously, for
small ν and large μ, using a transformation of variable
to μ′ = 1/μ, (thus μ′ is small), the coupled wavenumbers
are found as perturbations to the roots of P . In sum-
mary, we find that for small fluid-loading (characterized
by the parameter μ) coupled wavenumbers are pertur-
bations to the in vacuo flexural wavenumbers and the
wavenumbers of the rigid acoustic duct. With increas-
ing μ, these perturbations increase until for large μ, the
coupled wavenumbers are better identified as perturba-
tions to the wavenumbers of the pressure-release acous-
tic duct.

3.2 Beam Mode

For n > 0, the off-diagonal terms of the matrix L be-
come non-zero. Thus, the axial, radial and circumfer-
ential vibrations are coupled. As noted by Fuller [8],

Term Significance of roots
L Longitudinal wavenumber
B Bending wavenumber
R Rigid duct wavenumber
A Wavenumber of acoustic plane wave
P Pressure-release duct wavenumber

Table 1: Significance of the roots of each term of the
coupled dispersion equation (3).

these higher order modes resemble the n = 1 mode in a
qualitative sense. Thus, we choose the n = 1 mode (viz.
the beam mode) as the representative case for our study
on higher order modes of the circular cylindrical shell.

The asymptotics of the beam-mode vibration of a
circular cylindrical shell is done in two parts:- (1) high
frequency Ω � 1 (2) low frequency Ω � 1. The longitu-
dinal and torsional modes cut-on only beyond a cut-on
frequency [8]. Thus, these wavenumbers represent prop-
agating waves only for the high frequency. To determine
these wavenumbers we rescale the frequency as Ω′ = εΩ
and the wavenumber as κ′ = εκ, where 0 < ε � 1 is a
small fictitious rescaling parameter. Since the bending
wavenumber varies as the square root of frequency, for
finding this wavenumber we rescale the wavenumber as
κ′ =

√
εκ. After the rescalings are done, a regular per-

turbation method gives the asymptotic series solution
for the wavenumbers. These results are presented in [9].

Analogously, for the low frequency calculations, we
introduce the rescaled frequency variable Ω′ = Ω/ε. At
low frequencies only the bending wave has a propagat-
ing nature. To determine this wavenumber, we intro-
duce the rescaling κ′ = κ/

√
ε. A regular perturbation

method on the rescaled variables yields closed form an-
alytical expressions for the bending wavenumber. It
can be noted from the perturbation solution that the
one term asymptotic solution matches with the Euler-
Bernoulli model while the two term asymptotic solution
is in agreement with the Timoshenko model.

For both the high and low frequency ranges, the cou-
pled dispersion equation is solved for small and large
values of μ. The perturbation solution procedure is the
same as described previously. The qualitative nature of
the coupled wavenumbers found is also identical to that
described previously for the axisymmetric mode.
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Figure 4: Wavenumbers of an in vacuo circular cylindrical shell with ν = 0.25, h/a = 0.05 for high frequencies
(Ω � 1). (a) Bending wavenumber. (b) longitudinal wavenumber. (c) Torsional wavenumber.
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Figure 5: Bending wavenumber of an in vacuo circu-
lar cylindrical shell with ν = 0.25, h/a = 0.05 for low
frequencies (Ω � 1).

4 Elliptic cylindrical shell

Initially, using the shallow shell theory [10], we study the
dispersion characteristics of an in vacuo elliptic cylindri-
cal shell for small values of the eccentricity (e). The use
of shallow shell theory essentially limits the analysis to
high frequencies only. Using e as an asymptotic param-
eter, the shell equations are simplified and finally the
elliptic shell equations are formulated as a correction
over that of the circular cylindrical shell [11].

Using ε as the asymptotic parameter (which depends
on eccentricity (e)) and φ as an Airy-type stress func-
tion, the non-dimensional forms of the governing equa-
tions for the elliptic shell are given by

[1 − ε cos (2η)]
[
κ4w̄ − 2κ2 ∂2w̄

∂η2
+

∂4w̄

∂η4
− (1 − ν2)

β2
Ω2w̄

]
− κ2φ̄ = 0, (4a)

[1 − ε cos (2η)]
[
κ4φ̄ − 2κ2 ∂2φ̄

∂η2
+

∂4φ̄

∂η4

]
+

1 − ν2

β2
κ2w̄ = 0, (4b)

where bar denotes non-dimensional quantities.
In this perturbation based approach, the objective

is to understand the principal effect of eccentricity. As
a novel contribution, using a symmetry-based classifica-
tion for the modes and a harmonic balance technique,

the in vacuo structural wavenumbers for the elliptic ge-
ometry are found as a correction over that of the circular
cylindrical geometry. Acoustic analysis of elliptic ducts
is known in the literature [12].

Next, as in the previous geometries, the coupled equa-
tions are formulated in terms of a fluid-loading parame-
ter (μ) representing the ratio of masses of the fluid and
the structure per unit area of the curved shell surface.
In particular, the first equation is modified as

[
κ4w̄ − 2κ2 ∂2w̄

∂η2
+

∂4w̄

∂η4
− 1 − ν2

β2
Ω2w̄

−1 − ν2

β2
Ω2μ

(
Cem(ξ0, q)
Ce′m(ξ0, q)

)
w̄

]
(1 − ε cos(2η))−κ2φ̄ = 0,

while the second equation remains unchanged.
Using qualitative arguments, we find that for ex-

treme values of μ, the relation of coupled wavenumbers
to the uncoupled structural and acoustic wavenumbers
is similar to the other geometries described previously.
This enables us to fix the initial guess in a numerical so-
lution procedure for obtaining the coupled wavenumbers
for small and large μ.

5 Conclusions

In this paper, coupled wavenumbers for the systems
shown in figure (1) were presented using a unifying asym-
ptotic approach. The detailed derivations of each of the
cases were presented in our earlier works. Here, we have
discussed certain common features of the formulation
and the solution. In each case, we have shown how the
coupled equations can be treated as a modification to
the uncoupled equations of the structure and of the fluid.
The modification depends on a parameter μ termed as
the fluid-loading parameter. Physically, μ denotes the
mass ratio between the structure and the fluid.

From the coupled equations, we showed that for μ =
0, we get back the in vacuo structural wavenumber and
the wavenumbers corresponding to the rigid-acoustic du-
ct. Again, for μ → ∞, we get the wavenumbers of the
acoustic duct with pressure-release wall conditions. A
perturbation method based on μ (for the case of small
μ) or 1/μ (for the case of large μ) gives the coupled
wavenumber solutions. Depending on the geometrical
complexity, other asymptotic parameters also are used.
These are summarized in Table (2).
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Problem Asymptotic parameters
2D waveguide μ

Circular Cylinder ν & μ
(Axisymmetric mode)

Circular Cylinder ε & μ
(Beam mode)

Elliptic cylinder e and μ

Table 2: Various asymptotic parameters used in this
article.

The qualitative nature of the coupled wavenumbers
obtained is the same for all the geometric configurations
studied and is schematically shown in figure (2). The
sign of the correction term in each case indicates the
nature of loading of one medium over another. Hence,
the following inferences regarding the physical effect of
fluid-structure coupling are in order:-

◦ For small μ and for frequencies below the coinci-
dence frequency, the coupled structural wavenumber is
greater than the in vacuo structural wavenumber. This
implies that the effect of the fluid-loading is in the form
of additional mass on the structure. For frequencies
beyond coincidence, the difference between the coupled
and the uncoupled structural wavenumber alternates in
sign indicating that the nature of the fluid-loading is
alternately mass-like and stiffness-like.

◦ For small μ, there exists a coupled wavenumber
branch close to the wavenumber of the acoustic duct
with rigid-walls. This coupled rigid-duct wavenumber is
lower (greater) than the uncoupled wavenumber for fre-
quencies below (above) the coincidence frequency. Thus,
the flexible structural boundary has a mass-effect for fre-
quencies beyond the coincidence frequency and increases
the incompressibility of the fluid for frequencies below
the coincidence frequency. Also, the cut-on frequencies
of the rigid-duct wave modes are increased.

◦ For small μ, at the coincidence frequency, the cou-
pled structural wavenumber joins with the coupled ac-
oustic wavenumber and vice-versa. Thus, in contrast to
the uncoupled case where the two physical wavenumber
branches intersect, in the coupled case there is no in-
tersection but a gap is created at the coincidence (also
observed by Cabelli [13]).

◦ As μ increases, the coupled wavenumber branches
get perturbed further till at large μ, the coupled wavenu-
mber branches are better identified as perturbations to
the wavenumbers of the acoustic duct with pressure-
release wall conditions. For large μ values, the coupled
pressure-release wavenumbers are greater than the un-
coupled counterparts below the coincidence frequency
and vice-versa. Thus, the effect of the flexible struc-
tural boundary is opposite to that described previously
for small μ.

◦ For large μ, the coupled pressure-release wavenum-
ber equals the uncoupled pressure-release wavenumber
at the coincidence frequency. Thus, the flexibility of the
structure has virtually no effect at this condition.

Using the asymptotic approach discussed in this ar-
ticle, these common features of the coupled wavenumber
characteristics for the various geometries shown in figure
(1) are brought out in the schematic of figure (2).
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