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ISRIE is a collaborative project between the universities of York and Newcastle and ISVR in Southampton. The 

work being undertaken at York is in its second year and focuses on signal separation and classification. 

Developing novel methods for classifying urban and other sounds into distinct categories (such as transportation, 

industrial, human, animal, etc.) is the focus of the work detailed in this paper. The classification system will 

initially consist of 2 main parts: a feature extractor and a classifier. Results from this basic system will be 

presented and a discussion given on how the system will be expanded. It is envisaged that eventually the system 

will use some form of syntactic pattern recognition to perform the identification of individual sounds.  

1 Introduction 

The ISRIE project arose from the EPSRC Ideas Factory ‘A 

Noisy Future’. The proposed outcome of the project can be 

briefly described as an intelligent noise metering system 

able to determine the direction and source from which a 

sound originated. It will also be able to provide other details 

such as the time at which the sound occurred and how loud 

the sound was. If a number of these instruments are used in 

a sensor network it should be possible to estimate the 

location of the sound source. Such an instrument would be 

a useful tool in urban noise level measurements, either for 

research or for legislative purposes. This can be a very time 

consuming process when performed manually and can also 

be subjective if soundscape content is also being examined. 

More details on the ISRIE project and its application to 

legislative procedures can be found in [1]. 

1.1 Sound Categories 

The signal classification part of the ISRIE project has 

identified the key sounds that are to be recognised within an 

urban soundscape. These are shown in Fig. 1. The decision 

to focus on these sounds for the final system was based on 

discussions with project partners and current noise 

legislation in the UK. 

 

 

Fig. 1 The relationship between the key sounds to be 

identified. 

The soundscape has been split into 3 main categories: 

Anthrophony, relating to sounds made by humans; 

Geophony, naturally occuring sounds; and Biophony, 

sounds made by animals. Only the most prevalent sounds 

that would be heard in an urban soundscape have been 

included. So under the category of biophony only birdsong 

and the bark of a dog have been included because other 

animal sounds are unlikely to exceed the background noise 

level of an urban environment. Other sounds that could be 

included under geophony are likely to be caused by the 

interaction between an object and the wind (a tree, for 

example).  These sounds are not included in the diagram 

because it was pointed out that when wind speeds exceed 5 

m/s an acoustic measurement is unlikely to be taken 

because of the noise induced on the sensor by the wind. A 

similar method of breaking down the soundscape has been 

seen in [2]. The approach taken by Gage et al. applied 

frequency divisions to separate the 3 main categories. This 

could lead to mis-classification as not all sounds found in 

each of the categories will necessarily adhere to the 

frequency bands. 

2 Classification Systems 

Classification systems typically consist of 2 main 

components – a feature extractor and a classifier [3]. The 

role of the feature extractor is to reduce the complexity of 

the data being input to the classifier to optimise the 

classifying process [4]. There are many examples in the 

literature of classification systems for the analysis and 

classification of both audio and other wave-based signals. 

The range of techniques used and applications vary 

considerably from wavelet feature extraction and multi-

layer perceptron network classifiers for human bowel-

sound monitoring [5] to time-domain and Mel-frequency 

techniques for species identification [6,7,8]. The area of 

environmental sound analysis has also had a lot of 

development. Cowling and Sitte [9] provide an excellent 

overview of techniques as applied to a sonic security 

system. Their research found that a continuous wavelet 

transform feature extractor coupled with a dynamic time 

warping classifier gave the highest recognition accuracy 

(70%). A novel approach to environmental sound 

recognition is found in the work of Defréville et al. [10]. 

Their work focussed on using genetic algorithms to find 

problem-specific features for each individual signal. The 

results of this method are promising (~90% accuracy) but 

the signal processing techniques discovered are very 

complex. 

To date, of the many feature extractor and classifier 

methods available Time-Domain Signal Coding for feature 

extraction and a Self-Organising Map have been 

implemented to make up the classification system.  

Time-Domain Signal Coding (TDSC) is a feature extraction 

technique which focuses purely on the time-domain 

representation of an audio signal. The waveform is 

seperated into epochs (the signal data between two 

consecutive zero crossings) and each of these are analysed 

in terms of shape (S) and duration (D). The shape of an 

epoch is determined by how many positive or negative 

minima it contains and the duration is simply the length of 

the epoch in samples. Further details of how TDSC is 

performed can be found in [6,7]. TDSC has previously been 

used for monitoring of machinery and heart sound analysis 

[6]. In its application to species recognition TDSC has 

achieved 100% classification accuracy for 13 different 

Cricket species.  
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3 Application of TDSC  

It was mentioned above that a TDSC feature extractor was 

coupled with a Self-Organising Map (SOM) classifier for 

the initial system development. Details of SOMs and their 

implementation can be found in [11]. The main focus of 

this work has so far been to produce an output from the 

TDSC algorithm which is suitable for classification by the 

SOM. The duration-shape (D-S) information gathered by 

TDSC is typically organised into a codebook representing a 

range D-S combinations. The S-matrix is an array of data 

which associates a frequncy of occurrence to each of these 

combinations. In previous studies using TDSC the 

codebook has been manually designed for the application, 

typically giving ~30 codes. To generate a suitable codebook 

for containing urban sound data distributions were 

produced of D-S combinations for various sounds. Fig. 2 

shows an example of one such distribution. 

 

Fig. 2: D-S distribution for a recording of a building 

site digger. The x-axis represents D and the y-axis 

represents S. 

The maximum D-S pairing found was for an air 

conditioning unit with D=1468 and S=165. Based on this 

and other results it was decided to limit D to 1000 and S to 

75. Using all possible combinations of these D and S ranges 

would give a codebook with a very large order of 

magnitude (>50,000). This number was reduced to 1700 by 

deviding duration ranges to fit the data into.  

Fig. 3 shows the initial classification system used. The 

audio signal was broken into frames and each of these were 

analysed seperately using the TDSC algorithms. The TDSC 

output data for each frame was then classified by the SOM 

to give a class output for each frame. 

 

Fig. 3: The arrangement of the initial classification 

system. 

Initial results using the codebook discussed above were 

disappointing. The SOM consistently gave the same 

winning units for all sounds. Upon analysis of the TDSC 

output it was found that the S-matrices had an average 

sparseness of 95%. For this reason the SOM was struggling 

to differentiate between the S-matrices generated for 

audibly different signals. 

Further inspection of D-S distributions (Fig. 2) showed that 

further reduction of the maximum D and S values was 

possible without sacrificing significant amounts of data. A 

codebook with a size of 340 was achieved using D=150 and 

S=15. Results using this codebook are presented below 

using recordings of sounds found in an urban setting and 

recordings of some Cicadas. 

3.1 Cicada Classification 

High quality recordings of 3 different species of Cicada 

were made available to test the system. It was decided to 

experiment with these recordings for two reasons: a) the 

Cicadas are difficult to differentiate by ear so it would be a 

good test to see if the system could; and b) there is interest 

in developing a real-time system for the identification of 

different Cicada species. A total of 24 recordings were used 

– 3 in which the species were known (training set) and 21 

unknown (for testing). The framelength used in the TDSC 

analysis was 0.2 seconds. It was decided to use a 10 unit 

SOM for classification. 

Fig. 4 shows a plot of the class outputs for each frame of 

the known recordings. It is clear to see from this plot that a 

very simple decision rule (perhaps based on an LVQ 

method) would allow seperation of the 3 different species 

of Cicada. Flamatus appears only in classes 1-3, japonicus 

in classes 4-6 and biahamatus dominates classes 8-10. Fig. 

4 also shows the class outputs for one of the unknown 

recordings. By visual inspection it is clear that this 

particular recording would be placed in the bihamatus 

category. Overall, the system comprising of a TDSC feature 

extractor and a SOM classifier achieved a classification 

accuracy of 95%. 

 

Fig. 4: Frame-wise representation of SOM class output. 

The different classes are bihamatus (●), japonicus (□), 

flamatus (x) and test data (+). 

3.2 Urban sound classification 

Using the same system as that described above, 

classification of urban sounds was experimented with. The 

recordings used were of some of the sounds given in Fig. 1 
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(air conditioning unit, single motor vehicle, birdsong and 

building works). There were not as many recordings of 

each of these sounds available as there were for the Cicadas 

but the resulting data discussed below is still useful.  

The recordings of each type of sound were seperated into 6 

second sections (of the available data this provided 2 or 3 

different recordings for testing). Initially a framelength of 

0.1 seconds was chosen. As little is known of the 

significance of framelength in this application, 0.1 seconds 

was chosen as a starting value. The same theory applies to 

the number of output classes chosen for the SOM . In this 

instance 40 classes were used.  

A  plot of class output for each frame of a building site 

recording is shown in Fig. 5. The prominent sound in this 

recording was a large caterpillar-track-driven digger 

interspersed with some road noise. 

 

Fig. 5: Framewise SOM class output for a 6 second 

building site recording. 

It is clear to see from this plot that there is no clear banding 

of class output as there was for the Cicada recordings. Plots 

for the other sounds listed above produced very similar 

results, i.e. no obvious class dominance. These 

disappointing results influenced the decision to start 

looking at how framelength affected the SOM class output 

plots. Reducing the framelength had the effect of increasing 

the apparent lack of structure seen in Fig. 5. Increasing the 

framelength to 0.5 seconds produced plots that were more 

promising. Fig. 6 shows the result of using the longer 

framelength with the same recording as used to produce 

Fig. 5 and another recording of a similar soundscape.  

 

Fig. 6: SOM class output for 2 similar building site 

recordings; (●) uses the same audio data as that in Fig. 

5 and (□) is shown for comparitive purposes. 

 

Fig. 7: SOM class output for a blackbird recording. 

Using a longer framelength does seem to have a positive 

affect on the SOM output. Visual analysis of Fig. 6 shows 

that both of the building site recordings mostly produce 

outputs in the 12-20 class region. Figure 7 shows the class 

outputs for a blackbird recording and is included for 

comparison to the building site output. The class range for 

the blackbird recording is mostly 20-27, different ot that of 

the building site.  

Converting the class output data for the building site into a 

histogram shows a distinct tendency for the class range 

stated (see Fig. 8). Similar SOM output histograms were 

achieved for the other urban sounds when analysed using a 

framelength of 0.5 seconds. The Cicada recordings 

produced results in line with those discussed in Section 3.1 

showing that increasing the framelength to 0.5 seconds does 

not have an adverse affect on their classification. 

 

Fig. 8: Histogram of SOM class output for 2 building 

site recordings using a framelength of 0.5s for TDSC 

analysis.  

3.3 Further Classification Work 

The above findings are encouraging for the development of 

a system able to distinguish between various urban sounds 

(and species specific sounds). Further work in this area will 

initially focus on retrieval and analysis of more urban sound 

recordings. This will enable validation of the above results 

and to see if this approach shows promise for a broader 

range of audio data. SOM output class histograms for the 

new recordings will also be generated to discover any 

trends that may be present. It could also be possible to use 
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these histograms as an input to another classifier to see if a 

clear distinction can be found. 

One direction for development of the classification system 

which is of particular interest would be to implement 

syntactic methods. Syntactic pattern recognition (SPR) 

involves breaking data into its basic building blocks, known 

as pattern primitives, and devising a grammar for a data set 

[12]. In the case of speech analysis (an area in which SPR is 

often used) the pattern primitives and grammar are fairly 

obvious. To use syntactic techniques for urban sound 

classification the pattern primitives will have to be devised 

based on the data available. From the plots given in Figures 

4-6 there seem to be two options for pattern primitives; 

either the actual class outputs and how these follow each 

other, or applying trends to how the classes change with 

time. Once some pattern primitives have been decided upon 

a suitable classifier is then required to analyse these. A 

hidden Markov model (HMM) classifier could be the 

solution. HMMs are based on a state machine structure 

where the transition from the current state to the next has a 

probability associated with it [13]. A HMM will need 

training like any other classifier to determine the state 

transition probabilities. There are other possibilities for 

SPR classifiers but HMMs will be considered in the first 

instance because previous studies have shown they can be 

used for classification of everyday sonic environments [14]. 

The further work described above expands on the system 

structure shown in Fig. 3 by making the TDSC feature 

extractor and SOM classifier combination a preprocessor 

for further classification. 

4 Conclusions 

This paper has discussed the current work on signal 

classification for the ISRIE project. A system has been 

described consisting of a Time-Domain Signal Coding 

feature extractor and a Self-Organising Map classifier. A 

suitable TDSC codebook has been developed for use with 

urban audio signals and the current version of the codebook 

has improved significantly on the original. The effect of 

framelength on the SOM output classes has been 

investigated. From the results given a framelength of 0.5 

seconds has shown the best results so far. Increasing the 

framelength further may have the effect of averaging the 

results too much and there will be no discernible difference 

between sources.  

Suggestions for further work have been made which 

investigate the potential for using syntactic methods in the 

classification process and how the current implementation 

can be improved upon. The current TDSC/SOM 

combination will become a preprocessing unit for any 

expanded system that is developed. 

Acknowledgments 

The Instrument for Soundscape Recognition, Identification 

and Evaluation (ISRIE) project is funded by the 

Engineering and Physical Sciences Research Council 

(EP/E009581/1). The authors would like to thank the ISRIE 

project collaborators (Stuart Dyne and Christos Karatsovis, 

ISVR Southampton and Gui Yun Tian and Hidajat Atmoko, 

University of Newcastle) and other members of the Applied 

Bioacoustics group at York for their discussions and input 

relating to this work.  

References  

[1] C.Karatsovis, S. Dyne, "Instrument for soundscape 

recognition, identification and evaluation: an overview 

and potential use in legislative applications", 

Proceeding of the Institute of Acoustics, 602-608 

(2008) 

[2] S.H. Gage, R. Maher, G. Snachez, "EcoEARS – 

Application for Long-Term Monitoring and Assesment 

of Wildlife", In Technical Symposium & Workshop: 

Threatened, Endangered and At-Risk Species on DoD 

and Adjacent Lands (2005) 

[3] R. Beale, T.O. Jackson, “Neural Computing: An 

Introduction”, 1
st
 ed. Reprint, Hilger (1998) 

[4] N. Beltran, M. Duarte-Mermoud, M. Bustos, S. Salah, 

E. Loyola, A. Peña-Neira, J. Jalocha, “Feature 

extraction and classification of chilean wines”, Journal 

of Food Engineering 75, 1-10 (2005) 

[5] C. Dimoulas, G. Kalliris, G. Papanikolaou, V. Petridis, 

A. Kalampakas, “Bowel-sound pattern analysis using 

wavelets and neural networks with application to long-

term, unsupervised, gastrointestinal motility 

monitoring”, Expert Systems with Applications 34, 26-

31 (2008) 

[6] D. Chesmore, “Application of time domain signal 

coding and artificial neural networks to passive 

acoustical identification of animals”, Applied Acoustics 

62, 1359-1374 (2001) 

[7] I. Farr, D. Chesmore, “Automated bioacoustic 

detection and identification of wood-boring insects for 

quarantine screening and insect ecology”, Proceedings 

of the Institute of Acoustics 29, Pt. 3 (2007) 

[8] C.H. Lee, C.H Chou, C.C. Han, R.Z. Huang, 

“Automatic recognition of animal vocalizations using 

averaged MFCC and linear discriminant analysis”, 

Pattern Recognition Letters 27, 93-101 (2006) 

[9] M. Cowling and R. Sitte, “Comparison of techniques 

for environmental sound recognition”, Pattern 

Recognition Letters 24, 2895-2907 (2003) 

[10] B. Defréville, P. Roy, C, Rosin, F. Pachet, “Automatic 

recognition of urban sound sources”, Audio 

Engineering Society 120th Convention (2006) 

[11] F.M. Ham and I. Kostanic, “Principles of 

Neurocomputing for Science & Engineering”, 

McGraw-Hill (2001) 

[12] K.S. Fu, “Syntactic Methods for Pattern Recognition”, 

Academic Press (1974) 

[13] L.R. Rabiner, “A Tutorial on Hidden Markov Models 

and Selected Applications in Speech Recognition”, 

Proceedings of the IEEE 77, No. 2 (1989) 

[14] L. Ma, B. Milner, D. Smith, “Acoustic Environment 

Classification”, ACM Transactions on Speech and 

Language Processing 3, No. 2 (2006) 

Acoustics 08 Paris

249


