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In this study analytical solutions are derived for the singular radiation and velocity patterns of a baffled elastic
beam, thus leading to closed-form expressions for the singular value expansion of a number of integral operators
which map a boundary velocity onto the acoustic pressure distribution radiated in far-field or intermediate
regions. Exact solutions to this problem involve prolate spheroidal wave functions which correspond to a set of
independent distributions with finite spatial support and with maximal energy concentration in a given
bandwidth in the wavenumber domain. A stable solution to the inverse source reconstruction problem is obtained
by decomposing the unknown boundary velocity into a number of efficiently radiating singular velocity patterns
which corresponds to the number of degrees of freedom of the radiated field. It is found that the degree of ill-
posedness of the inverse problem is significantly reduced when considering a hemi-circular observation arc with
respect to a linear array of sensors, by a factor scaling on the small angular aperture subtended by the
observation line. Estimates are derived of the spatial resolution limits that can be achieved in the source
reconstruction problem from the dimension of the efficiently radiating subspace.

1 Introduction

A typical issue at the heart of the acoustic source
identification problems is the reconstruction of a baffled
planar velocity distribution from knowledge of the
measured acoustic pressure radiated in free-field. In the
Near-field Acoustical Holography (NAH), i.e. acoustic
source reconstruction from near-field measurements, a
stable and accurate approximation of the unknown source
strength is numerically sought in terms of the Singular
Value Decomposition (SVD) of the discretized forward
operator which is an ill-posed linear compact operator. The
SVD is a powerful tool which has been used in conjunction
with regularization techniques to solve a number of NAH
problems, for instance to provide IBEM (Inverse Boundary-
Element Method) source reconstruction results robust to the
presence of noise in the measured field data [1], to extract
dominant acoustic modes in the Helmholtz Equation Least-
Squares method [2] or to extend patch NAH to complex
source geometries whilst avoiding the replication problem
of the measurement window [3].

In the present study, closed-form expressions are found in
terms of Prolate Spheroidal Wave Functions (PSWFs),
when dealing with a model-based inverse approach, for the
Singular Value Expansion (SVE) of the radiation kernel for
a baffled beam or a baffled panel. Such analytical solutions
solve a concentration problem, initially considered in the
context of Communication Theory and Electrical
Engineering by Slepian et al. [4], i.e. to find a class of finite
support velocity patterns which encapsulate the largest
fraction of energy in a given bandwidth in the wave-number
domain. The theoretical framework developed provides a
principled method of determining the number of
independently-radiating velocity patterns required to obtain
a stable reconstruction of the boundary velocity. In
particular, it is shown how the analytical SVE of the
radiation kernel allows to gain further insight into the
nature of the singular pressure and velocity modes, the
essential dimension of the radiating subspace, and the

resolution properties of the reconstructed velocity
distribution.
2 The acoustic source reconstruction

problem

First, one considers the forward radiation
problem illustrated in Fig. 1 in the two-dimensional case: a
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baffled elastic beam of length 2L', with a normal velocity
distribution, v(x'), is harmonically excited and radiates

into a fluid at rest. The radiated pressure is measured by a
microphone at every point of an observation line (resp. arc)
of extent 2L (resp. of radius R = L) located at a variable
height (resp. radius) above the baffled beam.
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Figure 1. The vibrating beam and the observation points

(line: red; arc: blue).

The radiated p pressure is expressed in terms of the
boundary velocity Vv as
L

plx,z)= J-G+(x—x',z)v(x')dx',

L'

(M

where G is the two-dimensional Green’s function of the
Helmholtz equation satisfying a Neumann boundary
condition the plane (z=0). It reads

G (x—x',z)= pckH® (kr)/2, where p is the fluid

density, ¢ is the sound speed, k = a)/ ¢ is the acoustic

over

wavenumber and (()2) is the Hankel function of second

kind and zero order. Assuming z >> L + L, the pressure
radiated in the intermediate (or pre-radiation) zone is
expressed as a spatial finite Fresnel transform of the source
distribution:

I
il/ZG—ikz J‘e—iﬂ'(x—x')z/(ﬂz) v(x')dx'. )

L'

pc

NAz
Furthermore, if Az >> 7L'*, the pressure radiated on the
far-field line is given in terms of the spatial finite Fourier

plx,z)

transform, Fx, of the boundary velocity distribution, as
follows
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Assuming R >> L, the pressure radiated over the far-
field observation arc is given by

pc J2
AR
A model-based approach requires the inversion of the
radiation operators (2), (3) and (4) to retrieve the amplitude
of the true velocity distribution V. These operators are
associated to Fredholm linear integral equations of the first
kind and their solutions are known to be ill-posed, i.e. to
depend discontinuously on the measured data. Such ill-
posed behaviour of the solution is all the more important
that the observation domain is several wavelengths apart
from the beam. In practice, there are often limiting factors
such as acoustic diffraction effects on the sensors, signal
distortion or harsh environments which limit the source-
sensor separation distance to far-field or intermediate
regions. A key point is then to determine the number of
independent velocity source components that can be
recovered accurately from band-limited pressure data
acquired in these configurations.

plx,z)= il/ze'ikRFx {WLrV}(kx/Z), 3)

p(R,6)= e ™ F {w, v)(ksin@). @)

3  Exact singular value expansion of
the radiation operators

The problem is to find an exact decomposition of the
radiation operators (2), (3) and (4) onto the corresponding
sets of singular radiation and velocity patterns. The
invariance properties satisfied by the PSWFs provide a
solution to this problem since the radiation integral
operators are directly related to the spatial finite Fourier
(resp. Fresnel) transforms of the source velocity
distribution, up to a scale and amplitude factor. Let R
denote the far-field (resp. intermediate) radiation operators
such that the boundary velocity v and its radiated field p

satisfy p =Rv. The singular radiation and velocity

patterns, respectively #, and V,, are solutions of

Rv, =0 u,, with 0, the corresponding singular value.

The singular system of the far-field radiation operator (3)
on the observation line is deduced from the self-
reproducing property of the PSWFs after a scale change of
variables. It is given by

2pc

O-n (7/R ) = EROn (;/R 71)7
(7R > X ) =i""e e v, (71{ a%ja 4)

v, (7, ¥)= w[n, j

where ¥, is the nth normalised PSWF and
Yo =27 LL'/Az is the angular space-bandwidth
parameter.

Simulations have been performed at 2 kHz assuming a
baffled elastic beam of length 2L" =44 and rectilinear
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(resp. hemi-circular) observation domains of extent

2L =84 (resp. of radius R =100A). The acoustic
transfer matrices are calculated between 81 evenly spaced
observation points and 81 monopoles uniformly distributed
over the beam length. Fig. 2 shows the exponential decay
of the first singular values associated to the radiation
operators (2-4) and determined from their analytic
expressions. The values coincide with those computed from
a SVD of the acoustic transfer matrix.
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Fig. 2. The first singular values of the radiation operator
which maps the source velocity onto a number of
observation domains: far-field line (O, exact values; M,
SVD computation), far-field arc (O, exact values; @, SVD
computation), intermediate line (V/, exact values; ¥, SVD
computation).

The singular system of the far-field radiation operator (4)
on the observation arc is found to be

2pc
o, (Yu)= TR Ry, (7.,1),
u, (74.0)= v, (7,.sin6),

(/2 g R )
v, (¥,x) = W(VH, j

with ¥, = 27L'L’/ A =kL . The singular velocity patterns

v, are the so-called “radiation modes”, solutions of the

eigenvalue problem, R'Rv, = v, =0, : v,, where R”

is the adjoint operator of R , which are known to maximise
the radiation efficiency ratio 4, of the radiator among all

band-limited surface velocity distributions [5]. Figures 3(a-
f) depict the beaming properties of the first six supersonic

radiation patterns, as given by the expression (6) of u,, .

They closely agree with their numerical approximations,
i.e. the left singular vectors of the acoustic transfer matrix.
It can be seen from Fig. 3 that each supersonic radiation
pattern beams in a particular direction within each quadrant
with the least radiating modes beaming towards grazing
angles from the source distribution. One infers that, for
compact source distributions, it would be sufficient to use a
hemi-circular array of microphones with an angular
aperture limited to the largest beaming direction covered by
the finite number of supersonic radiation patterns, as
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determined by the angular space-bandwidth parameter 4, .
As expected, the number of secondary lobes increases as
the radiation pattern order increases. It reflects the high
spatial frequency content of the high order radiation
patterns.
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Fig. 3. Directivity diagrams of the first normalised singular
radiation patterns associated to the far-field operator which
maps the source velocity onto the hemi-circular observation
arc: exact solution (curve) and SVD computation (*):

u, (a), u, (b), u, (c), uy (d), u, (e), us ().

In the intermediate zone, the pressure radiated (2) is a finite
Fresnel transform of the source velocity distribution, whose
invariant forms are the converging PSWFs. It leads to the
following singular system for the radiation operator in the
intermediate region,

pc

(o
n(}/R) \/Z
R A )

l// (yR’ /j’

with ¥, =27 LL'/ Az , the same angular space-bandwidth
parameter as for the far-field rectilinear case.
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Fig. 4. The first normalised singular radiation and velocity
patterns associated to the pre-radiation operator which maps
the source velocity onto the observation line at z =154
above the beam: exact solution (curve) and SVD (*) for

Re[v, ]| @), Im[v, ] (b). Relu, | (c) and Imlu, ] ().
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Figure 4 shows that both the real and imaginary parts of the
first five left and right singular vectors agree well with the
exact values (7) of the corresponding singular velocity and
radiation functions.

4 Accuracy of the reconstructed
boundary velocity

A step-like distribution of the singular values associated to
the far-field and intermediate radiation operators is shown
in Fig. 2. Analytical expressions are obtained from Eqs. (5-
7) for the number of Degrees Of Freedom (DOF) of the
pressure field radiated over the far-field and intermediate

lines, namely N, = \_4LL'/EZJ, and over the far-field
hemi-circular arc, namely Ny =\_4L'/ﬂj, where \_)CJ

denotes the integer part of Xx. Hence, a regularization
scheme based on the truncated singular value expansion of
the operator appears to be well suited to provide a stable
reconstruction of the boundary velocity from noisy pressure
data. Let M be an appropriate truncation parameter. It
corresponds to an “effective” number of DOFs, i.e. the
minimum number of independent singular components
required to represent the band-limited radiated pressure
field in the presence of noise. It is a function of the Signal-

to-Noise Ratio 5/ O, where O is a given tolerance on

errors in the reconstructed velocity and O is the noise
variance. It is given by:

=2y ! Woz(kzéj ,®

/4 (kz)’ o
where W, is the principal branch of the Lambert function
W, which satisfies the functional equation
W(u)ew(") =u and that takes real values for real
u>—e"' [6]. In particular, M is such that
o, 20 / 0>0,,,,, so that one can only reconstruct the

boundary velocity components for which the variance is
greater than the variance in the reconstruction of the noise,

o’/o,

From Fig. 5, one observes that, for each type of observation
domains, the spatial resolution of the reconstructed velocity
improves as frequency increases, due to an increase with

frequency of the number of DOF of the radiated field.
Moreover, at any given frequency, Figs. 5(a) and 5(b) show

that reconstruction from a hemi-circular arc of radius R
enables to reveal far greater resolution information about
the source distribution than reconstruction from a rectilinear

array of quota, z = R, with a necessary limited aperture,
2L/ z . Fig. 5(c) shows the effect of noise contamination
on the reconstruction of the piston-like boundary velocity.
As the singular values decay exponentially beyond N, ,
the essential dimension M of the radiation operator is at
most equal to N, +1. In the simulations, the equality is
reached with a SNR of 10°. The presence of noise then

leads to almost the same resolution as in the noise-free case,
however at the expense of the accuracy in the



reconstruction, as it can be appreciated when comparing
Figs. 5(b) and 5(c).
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Fig. 5. Piston-like velocity distribution reconstructed from
noise-free pressure data acquired over a far-field rectilinear
(a) and a hemi-circular (b) observation domain and from
noisy pressure data acquired over a far-field hemi-circular
arc (c).

5 Conclusions

A formal analogy has been pointed out between the
problem of determining the singular radiation and velocity
patterns of a baffled planar vibrating structure and the
invariance properties satisfied by the PSWFs under Fourier
and Fresnel integral transforms. The closed-form
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expressions of the singular system are found to well
correlate with the numerical solutions obtained from a SVD
of the associated radiation matrices. A regularization
scheme based on the truncated SVE is well-suited for
source reconstruction from far-field or intermediate regions
and a stable solution is found by decomposing the unknown
boundary velocity into a finite number of efficiently
radiating singular velocity patterns.
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