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The holography procedure of a vibrating object can be geometrically interpreted, resulting in a definition of the 
quality of the holographic process, the quality of which depends on the pressure measurement at an array of 
microphones and on the propagation model. 
In case of a wheel with the panel body, the only possible plane array is parallel to the visible side. The velocity is 
then accessible on the side concerned and requires a propagation model with adequate acoustic conditions over 
the whole plane on that particular side (source plane). 
Having in mind such a configuration, a numerical simulation in the 3D space has shown the environment 
influence on the reconstructed velocity on the visible side. It has appeared that vibrations, other than the ones of 
the front side and the rear acoustic load, can be described with admittance on the whole source plane. 
We present here an exhaustive search for the adequate admittance concerned leading to the actual propagator and 
the actual identified velocity. The success achieved in the procedure may rely on the single model and single 
velocity liable to radiate a given pressure on a sufficiently large antenna.  

1 Introduction

Among the various methods of inversion which exist in the 
field of the acoustic holography, experience shows that the 
identification of the vibratory velocity of a 3D complex 
object requires, in order to obtain good results, the use of a 
hologram not only surrounding but also taking the form of 
the object in the three dimensions [1, 2, 3]. 
When the antenna of microphones is not easy to design 
around the object under study (which can be the case of a 
car wheel surrounded with its panel body) or when we 
dispose only of a plane antenna of microphones, it should 
be noted that the object is seen by the plane antenna not as a 
whole but under a certain solid angle different from 4  
radians. The reconstruction of the vibratory object can then 
only be carried out on one of its vibratory sides. 
Thus, under these constraints and in order to deal with the 
inverse problem, the configuration in the unbounded 3D 
space proposed in figure 1 becomes that of figure 2 in the 
3D unbounded half-space. The source plane , limiting 
the domain , contains on the one hand the area 

s

1/2 1  

and on the other hand the complementary area c
s  

surrounding . It has been demonstrated in [4] that, in 
these conditions, the results of the inverse problem largely 
depend on the boundary conditions of the entire source 
plane . These conditions, revealed by the propagator 
which establishes a link between the vibratory velocity of 
the side  and the pressure radiated on the hologram plane 

, must reveal the rear acoustic load of the source plane 
as well as the possible vibrations on the hidden part of the 
vibratory source (velocity on the side  for example). 
Usually idealized, Neumann or Dirichlet conditions become 
then insufficient [5, 6, 7]. 
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Is it then possible to predict by holography not only the 
vibratory velocity of the source on its visible part from the 
antenna, but also the boundary conditions and thus to 
identify the proper propagator? 
The description of the problem rests on harmonic linear 
acoustics and the pressure radiated can be classically 
obtained with the integral equation method.
An exhaustive method (taking advantage of the 
interpolation of the admittance in the plane of the source) 
will show the convergence of the optimal velocity and its
associated propagator respectively towards the actual 

velocity and the actual propagator. This double inversion 
will be ensured thanks to an adapted parameter of control 
which represents, from a geometrical point of view, the 
“angle” between the vector associated with the 
measurement objective (the hologram) and the plane 
associated with the propagator. This parameter of control, 
making the estimation of the model possible, is not of the 
same type as the one which regularizes the matrices to 
facilitate the inherent inversion of the holography [8]. 

2 3D configuration and analytical 
resolution

The configuration (disk of radius r1 and of thickness e 
which represents a wheel) given in the 3D unbounded half-
space [0, + (, according to the axes 0y, is shown in Figure 
2. The side 1  of the wheel is excited by a vibratory 
velocity v1 – uniform and unitary for our numerical 
simulations – we want to identify by using an inverse 
problem thanks to measurements on a hologram plane H  
located on Hy y . These measurements are represented by 
the objective vector . Reminded in the introduction, and 
observed in [4], results of the inverse problem are 
dependant on the boundary conditions, revealed by the 
admittance 

np

1  on 1  and  on  (area located in the 
plan 

c
s

c
s

s  of the vibratory side and surrounding it). These 
conditions revealed on the one hand the “rear” acoustic load 
of the domain )- , 0[ and on the other hand the possible 
“hidden” sources. Thus, the side  in  is excited by 
uniform vibratory velocity v

2y2

2 and the “hidden” sources will 
be revealed, thereafter, by the ratio v2/v1. For the time 
being, the area p  representing the thickness of the tyre 
does not have a vibratory velocity. 
 
 
 
 
 
 
 

Fig.1 Representation of a car wheel in the unbounded 3D 
space, . 
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 where  is given in the direct problem. The approximated 
numerical solution of (5) is sought with the collocation 
method by meshing the surface in facets. The matricial
form of (5) is then 
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is the propagation model.  is made up of the auto- 
and inter-influences (with principal value associated with 
the singularity of Green’s function); B is the transfer of v
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Fig.2 Configuration of the wheel of the associated problem 
in the unbounded half-space, . 1/2

With the chosen time convention  and the propagation 
equation , the problem in the unbounded half-
space is given by the operator [4]: 

i te
2H k

1

H p 0                             in      (1) 1/2

y 1p i k p i v     on           (2) 1 (en y 0)

c
y sp i k p 0         on  (3) c

s (en y 0)

yp 0          on  (see hereafter) (4) ext

 Condition of radiation at infinity 

The equation (4) comes from the shape of the admittance 
on the complementary part, , of the source plane, c

s s , 
where  is defined by the plane (x0z) without the plane 

. Indeed, it has been shown that  tends towards 0 (see 
Figure 4); beyond a certain limit, an homogeneous 
Neumann condition is reached. This condition is essential 
for the finite meshing of the source plane. 

ext

s
c
s

The objective , in the unbounded half-space, is obtained 
with the integral equation method. The selected elementary 
solution 

np

i k r(P,Q)
1 2g (P,Q) e (2 r (P,Q))  satisfies the 

Helmholtz equation (1) with  at the right-hand 
member (where P corresponds to a point source in y = 0 
and Q to a receiver) and the conditions of radiation at 
infinity. Without any source within the domain and by 
including the boundary conditions, the pressure 

(P Q)

p(Q)  at a 
point belonging to the domain 1/2  can be written 

1

1

c
s

n 1/2

1 1/2

c
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p(Q) i v g (P,Q)dP

ik p(P)g (P,Q) dP

ik p(P)g (P,Q) dP

                   (5) 

 

s ; line vectors c  and d  come respectively 
from the second and third terms and from the first terms of 
the second member of the equation (5). Finally, M is the 
number of points in mesh 

t

s  and N is the number of points 
from meshing the hologram plane . H

The inverse problem is achieved with the intention of 
deducing the velocity v1 on  from measurements of the 
hologram points on 

1

H . Within the framework of the least 
square method and with appropriate hypotheses (M N and 
rank(E)=M), it can be concluded that 
 

1c c c
n 1 s 1 s 1 s*( , ) . ( , ) . *( , ) .v E E E pn     (7) 

 
The measure gives access to the velocity of the visible 
source seen from the hologram. The vibratory velocity 
obtained is in fact the solution of the algorithms:  

Hn

2c
1 s n s nmin ( , ). ( )

v
E v p . 

3 Interpolation of the admittance 

The vibratory velocity of the source plane for specific 
boundary conditions is accessible with equation (7). 
However, for the general case, these conditions being 
unknown, we have on the one hand to identify the good 
propagation model and on the other hand to identify the 
vibratory velocity of the studied source. 
For this purpose, it has been observed, [9], that acoustic 
holography is likely to be the subject of a geometrical 
interpretation. Indeed, results of holography are seen (see 
Figure 3) like resulting from the projection of the nominal 
objective of measurements  on the plane coming from 

the propagation model E ; the distance 
np

c
1 s( , )

c
1 s n s nd ( , ) ( )E v p  is then minimal, and equal to 

, and the value of  follows. To reduce the distance 
 when the vector p  is given, we can only act on 

opt
nvmind

mind n
c

1 s( , )E  (via the admittances  and ) to reach the 
“model plane” towards the measurement objective p . 

c
s1

n
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 From the shape of the admittance in Figure 4, it can be 
considered as a first approximation, in , that 

mind  

Hn pp  

c opt
1 s n( , )E v  

c
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space built
from

( , )E

 

R i I

IR  making it possible to reduce by two the unknown 
of the problem. Then the interpolation function becomes 

 
 

R If 1 i f i 1 f . 
 

In order to carry out a comparative study on the influence 
of the interpolation of the function, several interpolation 
functions are considered (see Table 1). For example, a first 
function, 

 
 

1 RfFig.3 Geometrical representation of the acoustic 
holography. 

, describes the shape of the admittance on 
the vibratory part by an exponential function and on the 
complementary part by a 1 r  function, thus 

Thus, it has been derived that the geometrical distance 
between model plane and nominal objective is revealed by:  

r
1

1 R
1

ae r 0, r
f b r [r , (r

2
n L

min
Arcsin d

p                (9)                          (8) 

 Furthermore, the selected admittance is a local reaction and 
depends on the point. The number of unknown of the model 
is then directly related to the number of nodes of the plane 
source mesh (  and ). It is hardly conceivable for time 
calculation reasons to identify each local admittance. In 
order to overcome this problem, let’s consider that the 
admittance is described by a known function (by the 
physics of the problem a priori) reducing the number of the 
unknown to the number of coefficients of the function. The 
step consists then in a first stage defining a function of 
interpolation describing the variations of the admittance 
over the entire plane. The physics, revealed here by 
calculation in the unbounded 3D space (see figure 1), gives 
in figure 4 the admittance of the source plane (calculated 
via the finite difference method between velocities) 
according to radial distance r. At this point, f is equal to 
250 Hz, v1 to 1, r

r
1 Rf a1r

1b r ae1r
1ae b r e thus  then Knowing  

on 10, r 1r
1 R 1f r ae

1
c
s

1 to 0.32m (wheel radius) and we consider 
an extreme thinness of the wheel. The studied problem is 
one with an axial symmetry.

 
Fig.4 Admittance  (absolute, real and imaginary values) 
calculated in the unbounded 3D space on the source plane 

(  and ) - function of the radial distance r of the wheel; 
(a) v

1
c
s

2/v1=0.2; (b) v2/v1=0.8. 
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Table 1 Interpolation functions of the admittance a) 

4 Reconstruction of the velocity and 
the propagator by inverse problem 

Having a configuration of wheel, a nominal objective 
issued from measurement (pressure on the hologram plane) 
and a model of propagation depending on the admittance, it 
is then possible to identify the optimal velocity on the
vibratory side of the wheel from equation (7). For the 
following numerical simulations, the hologram plane 

b) 

H  
consists of 121 equidistant nodes (11 ), distributed 
symmetrically along the wheel axes (x and z), on  1m

11
1m  

surface at a distance Hy 0.12m . 
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Let’s consider a great number of values for each coefficient 
of the interpolation functions (for our simulations, the 
actual value is contained in the given whole). The global 
transfer matrix between nominal pressure and velocity of 
the source then becomes the hyper-matrix 

 where M and N have the same 
significance as previously and A, B, C and D are the 
dimensions corresponding to the selected number of values 
for the coefficients a, b, c and d (here, for the case of the 
function ). Thus, for each one of the  
coefficients an admittance  is calculated, defining a 
particular model of . Then, for each model 

, it is possible to identify the associated velocity 
on the vibratory area of the wheel. The figure 5 shows the 
identified velocity on the vibratory side 

c
1 s N M A B C D( , )E

4 Rf ( ) A B C D

c
1 s( , )E

c
1 s( , )E

1 of the wheel 
versus the geometrical distance,  for all the possible 
values of the transfer matrix c

1 s( , )E . We observe that 
when the model plane tends towards the nominal objective 
(because  tends towards 0°), the identified velocity tends 
towards the actual one (in this case, v1=1). Thus, the 
minimal angle makes it possible to deduce on the one hand 
the propagation model as close as possible to reality
(revealed by the coefficients of the function chosen to 
interpolate the admittance) and on the other hand the good 
velocity of the source. 

 

 
Fig.5 Absolute value of the average identified velocity, on 

the side 1 of the wheel - function of the geometrical 
distance  for each model c

1 s( , )E  built with the 
interpolation function ;                                   

(a) with a ratio v
4 Rf ( )                            

2/v1=0.6; (b) with a ratio v2/v1=0.4. 

With the minimal value of , corresponds an interpolation 
function of the optimal admittance making it possible to 
describe as well as we can the actual value of the 
admittance. The figure 6 represents the optimal admittances 
for the different interpolation functions of table 1. The 
function is the function which describes the best the 
actual admittance. It is noteworthy to observe that this 
function, needs twice more coefficients than the other 
interpolation functions, inevitably affecting the computing 

time of the hyper-matrix . A compromise will 
have then to be reached between precision of the model we 
want to obtain (leading to the good identified velocity of 
the source) and the computing time. 

c
1 s( , )E

 a) 
 

 
b) 

4 Rf ( )

Fig.6 Absolute value of the optimal admittance - function 
of the radial distance r (in m) when the model 

a) 
c

1 s( , )E  
corresponds to the minimal geometrical distance ; 

comparison of the interpolation functions with the actual 
value calculated in the unbounded 3D space;                     

(a) with a ratio v2/v1=0.6; (b) with a ratio v2/v1=0.4. 

Finally, the comparative study of figure 7 shows that the 
function 4 Rf ( ) is the most adapted to identify at best the 
actual velocity for different rear solicitations (revealed by 
the ratio vb) 

2/v1). Intuitively, the identified velocity will have 
much more probabilities to reach the actual velocity with 
the angle  decreasing. The geometrical interpretation 
makes sense and makes it possible, by the intermediary of a 
criterion (here, the geometrical distance or angle), to 
approach the propagation model towards the actual model 
and to deduce from it the vibratory velocity of the source. 

 a) 
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