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Abstract – An active sonar track-before-detect algorithm is described.  It is based on a hidden Markov model 
which uses a Viterbi algorithm to estimate the log-likelihood ratio of the presence or absence of a target in tracks 
within a state space representing a set of ranges, bearings, range rates and bearing rates, assuming a set of 
transition probabilities of changes in range rate and bearing rate. A detection is declared if the log-likelihood 
ratio exceeds a certain threshold and subsequently an HMM tracker, operating on a much smaller state space, is 
then employed. The performance of this algorithm on simulated data is evaluated. It is shown that, for moving 
and manoeuvring targets, the detection performance is significantly better than that of a conventional algorithm.  

1 Introduction 

In conventional automatic detection and tracking (ADT), 

data y(t,ω), depending on time, t, and observational 

variables, ω, such as range and bearing, is used to decide 
whether a target signal is present or not at any time t and 

any location ω. This process is known as detection or track 
initiation. After a target has been detected at time t0, the 

ADT has to track the target by estimating the location, ω(t), 
of the signal at later times t > t0. 

Track initiation relies on thresholding and integration. 
Conventionally, the integration is either performed by 
evaluating the mean power over some fixed number, N, of 
consecutive time intervals, before thresholding, or by 
applying an M out of N criterion after thresholding (or by a 
mixture of the two). In either case, the false alarm 

probability depends on the threshold, and on the extent, δω,
of the test window in the data domain. Increasing δω
increases tolerance to drift of the signal (or target 
manoeuvres) with time, but at the expense of increasing the 

false alarm rate. In practice, δω is usually given by the 
sensor resolution, and N, the integration time is determined 
by how long the target is likely to stay within one resolution 
cell (or sometimes by the duration of the shortest signal to 
be detected). Typically, N is less than 10.

In track-before-detect (TBD) processing a model of the 
dynamics of probable targets is used in order to integrate 
signal contributions over tentative tracks linking different 

resolution cells, (i.e. the position of the test window, δω, is 
allowed to evolve with time). Potentially, this allows the 
integration time, N, to be increased, thus allowing lower 
SNR targets to be detected. In most TBD algorithms 
processing is done on data blocks of fixed duration (i.e. N
fixed) [1, 2]. But, in this case we use a new track initiation 
scheme, the sequential Markov detector (SMD), combining 
a hidden Markov model (HMM) and sequential detection. 
At each time step a HMM calculates transition probabilities 
between different ‘hidden’ states in a space of states. The 

HMM allows for the testing of any path tttttx Δ+≤≤ 00
))(( in 

the state space from an exact expression of the joint 
likelihood ratio of this path and the data sequence 

ttttx tty Δ+≤≤ 00
)))(,(( ω  along the corresponding path 

ttttt Δ+≤≤ 00
))((ω in the data domain. In the SMD, the interval 

Δt is not fixed.

2 Theory 

2.1 HMM Detection 

The time behaviour of the target is assumed to be a Markov 
process taking its values from a finite state space {x1…xN}. 
The a priori probability of any path 

tttttxttX Δ+≤≤=Δ
00

))((),( 0 being the path of the target is 

given by the product of the initial state probability and the 
transition probabilities between successive states on the 

path, x(t-1) and x(t) for t0+1≤t≤t0+Δt. This can be evaluated 
recursively as 

)]1,([)]1(|)([)],([ 0000 −Δ−Δ+Δ+=Δ ttXPttxttxPttXP   (1) 

with )]([)]0,([ 00 txPtXP = , where the N initial state 

probabilities ])([ 0 nn xtxPP ==  and N2 transition 

probabilities ])1(|)([, mnmn xtxxtxPP =−==  are assumed 

parameters of our Markov model. 

Assuming that the data series 

ttttxX ttyttY Δ+≤≤=Δ
00

)))(,((),( 0 ω can be modelled as an 

independent random process with probability densities p0

for background noise and p1 for a mix of noise and signal, 
we can represent the probability density of the data at a 
point on the path under the hypotheses of noise only and 
noise plus target signal as 

)],(|))(,([)))(,((

],|))(,([)))(,((

1
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txttyPttyp

HttyPttyp
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xx

ωω
ωω

≡
≡               (2) 

respectively. Now the likelihood of the data series YX(t0,Δt), 
contingent upon the path X(t0,Δt) is 

)].,(|)1,([

)],(|))(,([)],(|),([
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00000
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X
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Δ−Δ×
ΔΔ+Δ+=ΔΔ ω  (3) 

In an HMM the information from the state process about 
the data at a particular time comes from the state at that 
time. Therefore, Eq.(3) can be expressed recursively as 

)].1,(),1,([

)]1(|)([

)))(,(()],(),,([
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00100
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xX ω
    (4) 

Now since ∏ Δ+=

=
=Δ ttt

tt xX ttypHttYP 0

0

)))(,((]|),([ 000 ω , and 

the likelihood ratio, ΛX,Y(t0,Δt) of (X(t0,Δt),YX(t0,Δt)) is 
obtained by dividing by )))(,((0 ttyp xω  for each point on the 

path, we have 
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For each state xn, we consider the maximum value of 

ΛX,Y(t0,Δt) for all paths X(t0,Δt) ending at xn: 

})(|),(max{),,( 00,0 nYXn xttxttttx =Δ+ΔΛ=ΔΛ          (6) 

which can be computed recursively by means of the Viterbi 
algorithm: 
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   (7) 

ωn being the location in the data domain corresponding to 
the state xn. 

By comparing Λ(xn,t0,Δt), for 1 ≤ n ≤ N, to a threshold, we 
perform a detection test which maximises the detection 
probability for a fixed false alarm rate given by the 
detection threshold value. This is the case for any signal 

stating at or before t0 and ending at or before t0 + Δt, but for 
signals starting and/or ending within this interval, better 
detection performance would be achieved with a shorter 
processing time window, i.e. one which is matched to the 
signal duration. In principle, the best detection performance 
would be obtained by performing the processing over all 

possible vales of t0 and Δt, but in practice a compromise 
must be found between detection performance and 

computation cost by choosing (t0,Δt) from a reduced subset 
of the possible values. A scheme for doing just that is the 
sequential Markov detector described in the next section. 

2.2 Sequential Markov Detector 

The number of paths increases exponentially with Δt. This 

leads to a false alarm rate which varies with Δt (depending 
on the balance between this exponential increase and the 
damping effect of the assumed transition probabilities) if 

Λ(xn,t0,Δt) is compared to a fixed threshold. Thus in order 
to keep the false alarm rate constant we need to either vary 

the threshold by a fixed factor for each unit increase in Δt, 
or vary Λ(xn,t0,Δt) at each time step by a constant factor K. 

If the target signal is present only for part of the time 

interval of the data the likelihood Λ(xn,t0,Δt) should be 
reset, ideally immediately before the target signal begins, in 
order to prevent the signal detection from being jeopardised 
by the noise data before the starting time of the signal. If 
the reset does not coincide with the start of the signal then 
at least it should be shortly before to minimise the effect of 
the noise data. Thus a logical reset process would be to 

reset Λ(xn,t0,Δt) (i.e. disregard the past data) if, by doing so, 
the current test value (and consequently future ones because 
of the recursive computation) are increased. 

These principles are applied in the SMD [3]. Its test value 

Λn(t) at each time t and each state n in the HMM state space 
is calculated recursively as 
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where K is a constant, chosen so as to make the reset 
probability approximately 50%. 

2.3 Application to Active Sonar Data 

We make the simplest choice for p0(y) and p1(y), in which y
is chosen as the unintegrated energy in a range-bearing 
cell1, and 
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where it has been assumed that the noise has been 
normalised to a mean value of 1, and the signal to noise 
ratio is S0. 

Instead of dealing with the likelihood ratio, it is more 
convenient to use the log-likelihood ratio. Thus we take the 
natural logarithm of both sides of Eq.(8), and substitute the 
forms for p0(y) and p1(y) given by Eq.(9). After some 
algebra it can be shown that Eq.(8) is equivalent to 
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where K has been redefined. K is regulated to maintain the 
reset probability close to 0.5. 

Unfortunately it is not sufficient just to continue to let the 
log-likelihood evolve, unchecked, after the threshold has 
been exceeded. The log-likelihood peak does not remain 
localised, it spreads out in all directions in the state space. 
This would lead to additional false detections and prevent 
the detection of real targets. Upon detection of a contact 
(real or false) it is necessary to inhibit further detection. 
Thus, after clustering of closely spaced threshold crossings, 
the log-likelihood ratio is reset to a background level (e.g. 
zero). Each cluster is used to initialise a new track in a 
dedicated HMM tracker operating in a much smaller state 
space. The data into the SMD is inhibited around the track 
positions. Fig. 1 gives a schematic overview of the 
processing chain. 

Normalise
and

Integrate
Data

Hidden
Markov
Detector

Initiate
Tracks

Update
Tracks and
Inhibit Data

State Space
Cluster

Threshold LL
Ratio

Inhibit LL Ratios

Merge
Tracks

Terminate
Tracks

Energy
Data

Fig. 1 Track-Before-Detect Processing Chain 

                                                          
1 The corresponding results for normalised, integrated data 
can be derived. For rectangular integration by M, the pdf 
generalises to a chi-squared distribution of 2M degrees of 
freedom The set of recursive equations turns out to be 
identical to those of the unintegrated case. 
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3 Simulation 

In order to compare the performance of the SMD with a 
conventional detector, normalised sonar data was 
simulated. For each ping, independent samples of 
exponentially distributed background noise of unit mean 
(and standard deviation) were generated in a 2-D grid of 
2500 range cells by 20 bearing cells. This would 
correspond reasonably well, for example, to an active sonar 
operating with a range resolution of 10m, dead range 3km, 
maximum range 28km, and 20 beams. A reasonable choice 
for the state space is a 4-D space representing range, 
bearing, range rate and bearing rate. A SMD was initialised 
with the following available states: 

Number or range cells 2500 

Number or bearing cells 20 

Number of range rates 41 

Number of bearing rates 3 

Number of hidden Markov states 2500×20×41×3 = 
6150000 

Table 1 States chosen for SMD processing simulated data 

The bearing cells, numbered 1 to 20, are arranged to wrap 
round cyclically so that the next beam after beam 20 is 
beam 1. Assuming a PRI of 40sec, the natural range rate 
resolution for the set of states would be 10m/40s = 0.25m/s, 
and the natural bearing rate resolution would be 

360°/(20beams×40s) = 0.45°/s. Thus this set of states 

corresponds to a max/min range rate = ±5m/s, max/min 

bearing rate = ±0.45deg/s. 

Next it is necessary to choose a transition matrix for the 
probabilities of different transitions in range rate and 
bearing rate. In these experiments we test two different 
transition matrices. The first is appropriate to a non-

manoeuvring target. It is a 1 × 1 matrix equal to 1. This 
implies that the probability of the target range rate or 

bearing rate changing by more than ±0.125m/s or ±0.225°/s 
is zero; i.e. there is a probability of 1 that the target has the 
same range rate and bearing rate, to within the accuracy of 
a resolution cell, at the next ping. This is, of course, an 
extreme choice. The second choice we test is a 
manoeuvring target model with a uniform probability of 1/9 

for the range rate to change by up to ±4 range rate units per 
PRI, corresponding to a maximum change in range rate of 

±1m/s from one ping to the next. We also impose a 

probability of ¼ each for the bearing rate to change by ±1 
bearing rate units per PRI and ½ for no change in bearing 

rate. Thus 9 × 3 = 27 different transitions in the range 
rate/bearing rate combination are possible. Range and 
bearing transitions are also constrained by simple 
kinematics. 

The simulated target was generated as a point target, 
occupying one range/bearing cell and of constant strength 
(amplitude) from ping to ping and added to the noise 
background in that cell. The strength of the target is the 
actual SNR, as the mean background noise power is 1. The 
occupied range/bearing cell changes from ping to ping, as 
appropriate to the target manoeuvre which we are 
simulating. 

4 Results 

4.1 Detection Threshold 

In both the manoeuvring target model and the non-
manoeuvring target model we found that a value of K0 = 0, 
gave a reset probability sufficiently close to 50% for 
simulated noise data. In order to estimate the false alarm 
probability versus the threshold 200 simulated pings of 
exponentially distributed data were processed by the SMD 
in order to allow the log-likelihood statistics of the 
recursive estimate to settle down to a steady state. In the 
case of the non-manoeuvring target model a further 400 
pings were then processed. A number of different 
thresholds were applied and, for each of them, the average 
number of threshold crossing per ping was measured. This 
was measured on every 20th ping, in order to obtain 
sufficiently decorrelated samples. Each ping has 50,000 
range/bearing cells. Therefore the false alarm probability 
per cell is the mean number of false alarms per ping divided 
by 50,000. The results are illustrated in Fig. 2. 

In the case of the manoeuvring target model a further 80 
pings were processed and the number of threshold crossings 
was measured on every 4th ping, in order to obtain 
sufficiently decorrelated samples. The results are illustrated 
in Fig. 3. 

 The decorrelation interval between measurements can be 
estimated from the relaxation time of the recursive filter 
represented by Eq.(10). In the case of the non-manoeuvring 
target model the transition probability matrix Pn,m is equal 
to zero unless the states n and m have the same range rate 
and bearing rate, in which case it is equal to one. The 
kinematics thus constrain the possible transitions to a one-
to-one mapping between the old states m and the new states 
n. We can disregard the occurrence of a reset for a large 

value of lnΛ, and in such a situation Eq.(10) implies a 

change in lnΛ between two consecutive connected states of 

δlnΛ(t) = yn(t) + lnPm,n + K. In running the algorithm we 
find, for the non-manoeuvring model, that K, settles down 
to a value of about –1.3. The input data, yn(t), has been 

generated with a mean value of 1. Thus, on average, δlnΛ(t) 
will be approximately –0.3. Over 20 pings, a high value of 

lnΛ(t) will, therefore, reduce by about 6. Looking at Fig. 2, 
we see that this will lead to about 10% of false alarms being 
redetections of previous higher values, 20 pings earlier. 
This amount of correlation will slightly reduce the effective 
number of independent samples, but should not affect the 
results significantly. 

For the manoeuvring target model, the relaxation time is 
more difficult to estimate. However, the kinematics allow 
the target to reach 5 different range/bearing cells with equal 
probability. Thus, assuming a current state which is a local 
maximum, the biggest cell in the neighbourhood at the next 
time step will be the one out of the 5 which has the largest 
value of yn(t). The mean value of this will be given by 

∞
−− ==

0

4

0

2833.25 dydxeyey
y

xy           (13) 
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using the standard peak picking statistics. 

Log-Probability of False Alarm versus Threshold
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Fig. 2 Log-Probability of False Alarm versus Threshold for 
Non-Manoeuvring Target Model 
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Fig. 3 Log-Probability of False Alarm versus Threshold for 
Manoeuvring Target Model 

The mean and maximum values of lnPn,m are given by        
–3.35 and –2.89, respectively and the value of K is found to 

be around –1.45, on average. Thus, on average, δlnΛ(t) will 
be approximately –2.52. (This allows us to predict that for a 

target of strength ys the growth in lnΛ(t) per ping will be 
approximately ys – 2.52 and hence a target of SNR less than 
10log102.52 = 4 dB will not integrate in this model.) Even 

with the maximum value of lnPn,m, δlnΛ(t) will be –2.06. 
This higher damping factor in the manoeuvring target 
model leads to lower threshold values for a particular false 
alarm rate than in the non-manoeuvring target model. Of 
course these damping factors do not imply that the mean 

value of lnΛ(t) continues to fall globally with t, as we have 
neglected the reset to zero which occurs for about 50% of 

states. Unfortunately, a high value of lnΛ(t) will produce a 
large effect on the PFA of the lower threshold values as it 
decays in subsequent time steps. The peak will decay to 27 
lower peaks at the next time step (the transition probability 
allows transitions to 27 different range/bearing rate states) 
and each of these will then decay to a further 27 peaks at 
the next time step, etc., thus producing a large cascade or 
avalanche effect on the number of false alarms at lower 
threshold values. Our measurements over 20 pings produce 

a maximum lnΛ(t) of 23.1, and the average peak value in a 
ping is 20.5. The lowest threshold value we are testing is 

15, therefore, if we measure the crossings every 4th ping, 

the expected decay of a previous peak is at least 4×2.06 = 
8.24, which should take the value below 15. This should 
provide sufficiently decorrelated samples. 

Fig. 2 & Fig. 3 indicate that threshold values of 30.7 and 
18.7 will achieve a false alarm probability of about 10-4 in 
the non-manoeuvring and manoeuvring models, 
respectively. For conventional processing, the threshold 
which must be applied to the raw data to achieve a PFA of 
10-4 is –lnPFA = 9.2. 

4.2 Probability of Detection 

Next we introduced a target moving at constant range and 
bearing rates of 3 range cells and 1 bearing cell per PRI. 
SNRs of 5, 7 and 9dB (non-fluctuating) were used. In Fig. 4 
and Fig. 5 we plot the PD versus number of pings for the 
non-manoeuvring and manoeuvring models, respectively. 
The PD was estimated using 28 independent runs with the 
target starting from different ranges. The estimate was 
made by counting the fraction of these 28 which had 
exceeded the threshold after a particular number of pings. 
Thus the measurement of PD is rather coarsely quantised in 
steps of  about 3.5% in these results. 

PD versus Number of Pings for PFA = 10-4
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Fig. 4 PD versus Number of Pings for Non-Manoeuvring 
Model: SNR = 9, 7 & 5 dB. 

PD versus Number of Pings for PFA = 10-4
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Fig. 5 PD versus Number of Pings for Manoeuvring Model: 
SNR = 9 & 7 dB. 

In Fig. 5 we have omitted the curve for SNR = 5dB because 
we found that, over 25 pings, though there was a slight 
general upward trend in the log-likelihood, the noise 
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fluctuations were high and the PD was small and 
unmeasureable with the 28 samples we were using. 
Consequently the few observed threshold crossing were not 
sustained. 

The PD of the conventional detector acting on the raw 
(normalised) data, on the other hand was calculated, 
assuming the threshold to be 9.2. For example, given a 

target of 7dB, the target strength is 107/10 ≈ 5. To obtain a 
level above 9.2 we need an additional noise contribution of 
at least 4.2. The probability of this occurring is 

%.5.12.4

2.4

≈= −
∞

− edxe x
 This will be the PD on this and 

every subsequent ping. The PD for conventional processing 
are listed in Table 2. 

SNR 5dB 7dB 9dB 

PD 0.24% 1.5% 30.1% 

Table 2 PD for conventional processing 

For a 9dB target the PD is barely sufficient for subsequent 
tracking and 5 and 7 dB targets would be, to all intents and 
purposes, undetectable by conventional processing. 

It is possible to argue that for N pings (with N>1) the total 
PD will be larger than this because there are N chances, so 
that PD(N) = 1 – (1-PD)N. However, this is over optimistic 
as, for example, if the processing only detects a target every 
5 or 6 pings, it is unlikely that the tracker will succeed in 
tracking it. With the SMD, on the other hand, once a 
detection has been made, it is usually sustained on 
subsequent pings, either by the detector itself, or in the 
implementation illustrated in Fig. 1, by a hidden Markov 
tracker, ‘seeded’ by the current log-likelihood ratios above 
threshold, and continuing to update using unthresholded 
data and, therefore, continuing to benefit from the ping-to-
ping integration inherent in this approach. Fig. 4 shows 
that, with the non-manoeuvring model, even a 5dB target 
would be detectable by the SMD, albeit with a latency of 
11-12 pings. For the manoeuvring model, Fig. 5 shows that 
a 7dB target is detectable with a latency between 7 and 11 
pings. 

5 Conclusions 

We have described the implementation of a track-before-
detect algorithm and its application to active sonar data. 
Using simulated data, plots of PD versus number of pings, 
for a fixed threshold, demonstrate a much better detection 
performance for weak targets than can be obtained using 
conventional processing. For strong targets there is no 
difference in performance, however, for targets 
intermediate in strength there are indications that there may 
be more latency in the track-before-detect algorithm (e.g. a 
conventional algorithm may detect the target at the first 
ping, whereas the TBD algorithm may require more pings). 
This may not be a problem in practice as real targets do not 
suddenly come into existence from nothing in active sonar. 
In any case it is always possible to run a conventional 
algorithm in parallel with a TBD algorithm. 

It has been pointed out that, for a fair comparison, the false 
alarm rate after contact following in the conventional 

system, should be used for setting the threshold in the case 
of the SMD, as no additional false alarm reductions are 
achieved up to this stage in the SMD. This would imply a 
false alarm probability of about 10-7 (i.e. 3 orders of 
magnitude lower). Assuming that the relationship between 
logPFA and threshold remains approximately linear, one can 
infer from Fig. 2 that this implies an increase in the 
threshold to about 43 instead of 30.7. On the other hand, 
one could argue that 2 orders of magnitude of this decrease 
in PFA are due to single ping shape recognition in the 
conventional sonar system. This shape recognition could be 
used with the SMD processing. So perhaps the appropriate 
PFA for fair comparison should be 10-5. However, a 
fundamental property of the SMD is that, due to integration, 
increasing the threshold does not affect the PD, it just 
affects the latency of the detections. Bearing all this in 
mind, it is apparent that it is very difficult to compare the 
performance of conventional and SMD processing. 

As expected, the detection probability was adversely 
affected by allowing target manoeuvres in the HMM (c.f. 
Fig. 4 & Fig. 5). This suggests that best overall 
performance may require a compromise in the manoeuvres 
which the model can accommodate or better still the use of 
multiple target manoeuvre models in parallel. 

The processing chain illustrated in Fig. 1 has been 
implemented and tested on real sonar data, with promising 
results. Future work will concentrate on reducing the PFA by 
refinements in this processing chain. 
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