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A Rijke tube is an open-ended tube with a compact heat source (flame or hot gauze) inside. The heat source is 
commonly modelled by the “nτ law”, which assumes a point source releasing heat at a rate that is proportional to 
the velocity (delayed by a time lag τ) at the heat source. The present paper aims to extend this model to include 
distributed heat sources. A distributed source is simulated by a row of point sources with individual heat release 
rates and time lags. The acoustic processes in the tube will be modelled by Lighthill’s acoustic analogy equation, 
combined with a Green’s function approach. The occurrence of thermo-acoustic instabilities will be predicted for 
different properties of the heat source. Geometrical complications in the tube, such as a blockage and a jump in 
cross-section, as well as a jump in mean temperature, will be taken into account. 

   
1   Introduction 
1.1   Rijke tube configuration 
We consider a Rijke tube with axisymmetric geometry; a cross-section between the tube axis and the tube wall is shown in 
Figure 1. The ends are open with pressure nodes just outside the tube at 1= lx  and 2= lx  (Rayleigh end correction). There is 
a blockage, a change of cross-sectional area from 1  to 2  and a jump in mean temperature from 1T  to 2T . The speed of 
sound jumps from 1c  to 2c  due to the temperature jump. The blockage, which is assumed to be compact, is modelled by an 
incompressible “airplug” of effective length effL  oscillating parallel to the x -axis. effL  depends on the geometry of the flame 
holder and has to be calculated numerically (see [1]). In the region around the blockage, the acoustic field is three-dimensional, 
but in the upstream region between 0=x  and 1X , as well as in the downstream region between 2=x X  and L , the field is 
one-dimensional. 
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Figure 1    Rijke tube with multiple heat sources    

 
The jump in mean temperature is caused by a steady heat source (marked by a solid grey line in Figure 1), which is situated 
near the downstream edge of the flame holder. The unsteady component of the heat source is represented by a distribution of 
point sources, shown in Figure 1 by broken grey lines. 
 
1.2   The Green function 
An important element of our theoretical model is the exact acoustic Green function ( , , , )′ ′G t tx x . This is the velocity potential 
in the tube at position x  and time t , created by an impulsive point source at position ′x  and time ′t . The exact Green 
function is the solution of  
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inside the tube ( c  is the speed of sound, taking values 1c  and 2c  in the upstream and downstream region, respectively) and 
satisfies the following boundary conditions: It is zero at 1= lx  and 2= lx  (this neglects losses from the ends), and it has a 
normal derivative equal to zero on all internal surfaces and on the tube axis. It also satisfies the conditions of reciprocity and 
causality. For the case where 'x  is in one of the one-dimensional regions, Green’s function has the form  
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H is the Heaviside function, ωn  are the eigenfrequencies of the Rijke tube (with steady heating) and ng  are the modal 
amplitudes. Green’s function is an impulse response: it is zero before the impulse (at '=t t ) and consists of a superposition of 
eigenmodes (numbered by the index n ) thereafter. Analytical expressions for ωn  and ( , ')ng x x  have been derived in [1]. 
 
1.3   The heat source 
The heat source is decomposed into several components, all of which are point sources. A steady component situated at qx  
releases heat at a constant rate and only serves to increase the mean temperature. An array of unsteady heat sources is situated at 
discrete points mx , 1, 2, 3, ...=m M ; each of these sources releases heat to the air (per unit mass of air). The combined heat 
release rate from these unsteady sources is  

Acoustics 08 Paris

4698



 
1

( , ) ( ) ( )
=

′ = δ −∑
M

m m
m

q x t q t x x .          (3) 

The heat release rate generally depends on aerodynamic fluctuations in the tube; this dependence is called the "heat release 
characteristic". We assume a dependence of the form  
 ( ) ( ( , ))= − τm m m mq t q u x t ,          (4) 
i.e. the heat release rate from source m  is a function of the acoustic velocity u  at that  source, delayed by a time lag τm . 
 
2   Governing equation 
The velocity potential φ  in the Rijke tube is governed by the nonhomogeneous wave equation (see [2] p. 508; γ  is the specific 
heat ratio), 
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We will derive an integral equation from (5) and (1) by performing the following steps: Equation (5) and the one-dimensional 
form of (1) are written in terms of the source variables 'x  and 't ; (1) is multiplied by ( ', ')φ x t , (5) by ( , ', ')−G x x t t , and the 
resulting equations are subtracted. This gives 
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This equation is integrated with respect to ′x  (from 1l  to 2l ) and ′t  (from 0 to t ). For a heat release rate of the form (3), the 
result can be simplified (using the boundary conditions at the tube ends) to give  
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We assume the following initial conditions: 
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i.e. the velocity and acceleration are zero throughout the tube at the time ' 0=t . Combined with causality of the Green function 

( 0=G  and 0
'
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t

 for ' ≤t t ), equation (7) then simplifies, due to the second integral on the right hand side becoming zero.  

 
The remainder of (7) can be turned into an equation for the velocity by differentiating with respect to x . Evaluation at 

1 2, , ...= Mx x x x  leads to a set of  integral equations giving the velocity at the heat sources in terms of the heat release rate, 
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 has been introduced for the velocity at the heat source j . 

 
3   Numerical solution 
The x -derivative of Green’s function is calculated from (2) and inserted into (9). This gives (using complex notation) 
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The integral in (10), i '
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over an interval of width tΔ , where tΔ  is a small time step, 
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The first integral represents ( )mnI t t−Δ . The second integral can be approximated: the time interval tΔ  is assumed to be very 
small, and therefore the heat release rate in this time interval is nearly constant and equal to ( )q t tm − Δ . With these results, 
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(11) can be written as  
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and this leads with equation (10) to  
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Equations (12) and (13) comprise an iteration procedure for the time history of the velocity ( )ju t , and also for that of the heat 

release rate ( )q tm  (see equation (4)). They are solved by stepping forward in time with steps tΔ . The starting point of the 
iteration is provided by the initial condition 1 00( )m tu t u=− τ =  (this precedes the initial conditions specified in (8)). 

 
4   Numerical results and discussion 
4.1   Rijke tube configuration 
The iteration described by equations  (12) and (13) was performed numerically for a tube with the following properties: 

 1 mL =  (tube length), 1 0 014 m= −l . , 1 014 m2 =l . ,  2
1

1 128=

 . , 0 093 meffL = . , 

 1 288 KT =  (room temperature), 2 488 KT = , 1
1 342 m sc −= , 1

2 446 m sc −= . 

The steady heat source was located at 0.3qx L= . The eigenfrequencies of the first two modes are 1
1 1235 s−ω =  and 

1
2 2722 s−ω = . A distribution of 4 sources was considered. These were situated at the positions 1 2 3 4, , ,x x x x , and had a 

linear heat release characteristic, 
 ( ) ( , )m m mq t u x t= β − τ ,                    (14) 
with time lags 1 2 3 4, , ,τ τ τ τ . β , which is a measure for the strength of the heat source, had the constant value 

6 -30.25 10 msβ = ⋅ . The time histories for the velocities and heat release rates were calculated as described in section 3, and 
from the resulting graphs, the stability behaviour of modes 1 and 2 was determined.  
 
4.2   Results for a single point source 
In order to be able to understand the results for a distributed source, we first consider a tube with a single point source and note 
how its stability behaviour depends on the source position and on the time lag. The calculations for the single-source case were 
done with the frequency-domain approach described in [3]. The results are shown in figures 2 and 3, giving the growth rate of 
mode 1 and mode 2. A positive growth rate indicates instability, a negative growth rate stability. 
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Figure 2   Stability behaviour of a single source: influence of the heat source position 
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Figure 3   Stability behaviour of a single source:  influence of the time lag 
 
Figure 2 shows the dependence on the source position, covering the whole length of the tube. The time lag is constant, 

0.0004 sτ = , which is about 8% of the period of mode 1 (fundamental period). Mode 1 is unstable if the position is in the 
upstream half of the tube and stable in the downstream half; for mode 2 there are four regions of stability/instability, each 
spanning roughly a quarter of the tube length. 
 
Figure 3 shows the dependence on the time lag and covers the whole of the fundamental period. The source is situated at 0.3L , 
about ⅓ of the tube length from the upstream end. Mode 1 is unstable if the time lag is within the first half of the fundamental 
period and stable in the second half; for mode 2 there are (just over) four intervals of stability/instability, each spanning roughly a 
quarter of the fundamental period. 
 
4.3   Influence of the heat source positions 
Four unsteady heat sources, distributed in various patterns along the tube axis were considered, and the stability behaviour of 
modes 1 and 2 was examined. The time lag was kept constant, 0.0004 smτ = . Mode 1 was always unstable if all four sources 
were in the upstream half of the tube, and always stable if they were in the downstream half. This is not surprising, given the 
behaviour of a single source, which was shown in figure 2. If the sources were distributed in the upstream and the downstream 
half, a sudden change in stability behaviour was found. The stability results for three such distributions are shown in table 1. 
The source positions are shown graphically (to scale) near the bottom of figure 2. 
 

distribution 1[ ]x m  2[ ]x m  3[ ]x m  4[ ]x m  mode 1 mode 2 

1 0.36 0.41 0.46 0.51 unstable stable 

2 0.36 0.42 0.48 0.54 marginally 
stable stable 

3 0.36 0.43 0.50 0.57 stable stable 

 
Table 1   Stability behaviour of modes 1 and 2 for three different source distributions 

 
The sudden change occurs irrespective of the length of the region covered by the sources. It is due to the heat sources in the 
upstream half acting like a source of acoustic energy, while the ones in the downstream half act like sinks. The overall effect 
depends sensitively on the source distribution. When modelling combustion instabilities, it is often assumed that the heat 
source is small compared with the acoustic wavelength and can therefore be treated as a source concentrated at one point 
(“compact source”). The above results show that this approach can be too sweeping; care needs to be taken when the heat 
source is distributed along a stretch about half-way down the Rijke tube. 
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4.4   Influence of the time lags 
Four sources, all at positions 0.3mx L= , but with various time lags were considered, and the stability behaviour of modes 1 and 
2 was examined. Mode 1 was always unstable if all four time lags were within the first half of the fundamental period and stable 
if they were in the second half. This is to be expected, given the behaviour of a single source, shown in figure 3. If the time lags 
were distributed in the first and the second half of the fundamental period, the stability behaviour depended critically on the 
distribution. This is shown for three such time-lag distributions in table 2. The time lags are indicated (to scale) near the bottom 
of figure 3.  
 

distribution 1[ ]sτ  2[ ]sτ  3[ ]sτ  4[ ]sτ  mode 1 mode 2 

1 0.0021 0.0024 0.0027 0.0030 unstable stable 

2 0.0021 0.0025 0.0029 0.0033 marginally 
stable stable 

3 0.0021 0.0026 0.0031 0.0036 stable stable 

 
Table 2   Stability behaviour of modes 1 and 2 for three different time-lag distributions 

 
These results show that heat sources with different time lags can cancel one another as acoustic sources. This has also been 
observed by van Kampen [4], who used a transfer matrix method. Combustion instabilities are often modelled with a heat release 
characteristic that contains time lags to describe different travel times to different points along an extended flame; typically, such 
models are simplified by replacing the individual time lags with a single time lag, which is some average of the individual time 
lags. The above results show that this can work well, but that care needs to be taken, especially when the individual time lags are 
distributed around a value, which is near one half of the fundamental period.  
 
5   Conclusions and outlook 
A Green’s function approach has been presented to model the behaviour of a Rijke tube with a distributed heat source. The 
heat source was discretised and represented by individual point sources at positions mx . Each individual point source had its 
own linear heat release characteristic, described by an nτ  law with individual time lags mτ . Several different distributions of 

mx  and mτ  were simulated. The results confirmed that the distributed heat source can often  be described by a single point 
source with a suitably chosen position and time lag. However, they also highlighted some cases where this approach can lead 
to errors in the stability predictions. 
 
The approach can be extended to include nonlinear heat release characteristics. It can also be used for Rijke tubes with multiple 
sources anywhere in the tube. 
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