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This paper presents the scattering s-matrix formalism along with a stable recursive algorithm based on the total 
s-matrix of a multilayered piezoelectric stack. By combining the s-matrix and the surface impedance matrix of 
the external media, various terminations of the stack can be handled in a unified way. Numerical examples are 
given to show the functional features of the s-matrix that are superior to other matrices. In addition to the 
unconditional stability throughout large and small thicknesses, the s-matrix formalism is pole-free, branch point-
sensitive, maintaining meanly-constant magnitude, keeping stable phase, and involving only dimensionless 
elements.

1 Introduction 

Many matrix models have been proposed for numerical 
simulations of acoustic waves in piezoelectric stacked 
structures, including the well-known transfer T-matrix [1-
3], more recent hybrid H-matrix [4], the impedance Z-
matrix [5-7] and its direct variant stiffness K-matrix [8,9], 
as well as the scattering s-matrix [10-14] comprising its 
partial form - reflection R-matrix. Though the essential 
problems of the numerical stability with the T-matrix are 
now resolved, numerical features of different matrix-based 
characteristic functions giving proper modes have not been 
systematically studied. We highlight the fact that for a 
problem of given boundary conditions (BC), the proper 
modes determined with any matrix formalism should be the 
same, but the form of the characteristic function is not 
unique. It varies with the formalisms used and can be 
formulated in different ways within the same formalism. 
With regard to functional behavior, the s-matrix seems to 
have some interesting features superior to other matrices. 
Recently, we provided [14] a natural definition and a direct 
derivation of the s-matrix for an elementary black-box 
containing a layer and an interface describing the linear 
relation of the amplitudes of waves entering and exiting the 
box, and developed a total s-matrix-based full recursion 
algorithm for stacks of any finite number of boxes in terms 
of the s-matrix of the last single box and the s-matrix of the 
stack without the last box. The stack BC is formulated in 
versatile terms of the surface impedance matrices (SIM) of 
the external media. The stack BC and s-matrix recursions 
are dealt with in parallel and independently one from 
another so that the stack recursion can be performed 
without specifying the stack BC and the same recursion 
results apply for different BC. In this paper, we investigate 
the numerical properties of the s-matrix formalism and 
demonstrate its specific features: pole-free, unconditionally 
stable for both large and small frequency-thickness (fh) 
products, involving elements not only homogeneous but 
also dimensionless. The s-matrix based characteristic 
functions are also shown to be branch point sensitive. 

2 s-matrix and recursive algorithm 

The generalized interface scattering matrix (GISM) of a 
black-box containing a single layer n of thickness hn and an 
interface separating it with the next layer n+1, noted by Sn 

of sub-matrices n
ijS   (i,j=1,2), is defined by 
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(x=D, I) denote the wave amplitudes of the direct (D) and 
inverse (I) modes at the top (−) and bottom (+) surface of 
the layer n. The terms Direct and Inverse refers respectively 
to the positive and negative x2-axis normal to the layering. 
The generalized total scattering matrix (GTSM) of the 
system containing m≥2 boxes from n to n+m−1, noted by 
sn;m, is defined by  
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Applying the state vector continuity at the interface 
assumed non metallized between any two adjacent layers in 
the layered structure, called stack, and after successively 
eliminating the intermediate mode amplitudes, we obtain 
the recursive relations for the GTSM sn;m of an m-box stack 
in terms of the GTSM sn;m−1 of the stack without the last 
box and the GISM Sn+m of the last single box [14]: 

 1;
2111

11;
12

1;
11

;
11

−+−−− += mnmnmnmnmn sSAsss  (3a) 

 mnmnmn +−−= 12
11;

12
;

12 SAss  (3b) 

 1;
21

1
21

;
21

−−+= mnmnmn sBSs  (3c) 

 mnmnmnmnmn +−−++ += 12
1;

22
1

2122
;

22 SsBSSs  (3d) 

with 1;
2211

−+−≡ mnmn sSIA , mnmn +−−≡ 11
1;

22 SsIB , and I is an 
identity matrix. Both matrices A and B remain non singular 
for any finite thick stack and they will not introduce poles 
into the s-matrix. For piezoelectric layers, we have derived 
an expression for the matrix Sn defined by Eq.(1) as [14] 
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where 1)(2 −−≡ xhjxx x
e vve sω , (x=D, I), vD=Q21, vI=Q22, 

11
22 ss ≡D  and 22

22 ss ≡I , and h is the layer thickness, all 

referring to the layer n. Qij and ij
2s (i, j=1, 2) are sub-

matrices of the full modal (Q) and diagonal spectral (s2) 
matrices relevant to the material eigen-solutions calculated 
as a function of the longitudinal slowness s1≡k1/ω parallel 
to the x1-axis, and arranged appropriately [16]. ij

nR  are 
expressed in explicit terms of the characteristic surface 
impedance matrix (CSIM) of both layers n and n+1 as 
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with D
n

I
n 1+−≡ GGC . The symbols x

nG  (x=D, I) stand for 

the CSIM of the layer n and is defined by 1)( −≡ x
n

x
n

x
n vtG  

with 11
n

D
n Qt ≡ , 12

n
I
n Qt ≡ , 21

n
D
n Qv ≡  and 22

n
I
n Qv ≡ . We 

remark that ij
nR  exhibit poles when the matrix C is 

singular. C does possess a singularity in configurations 
pertaining the interface wave - an isolated proper mode, 
independent of fh, which exists at the interface of two half 
spaces satisfying some specific material properties. For an 
interface separating a solid and the vacuum, this mode 
certainly exists and is nothing but the free surface acoustic 
wave (SAW). 

3 Various forms of characteristic 
functions and reduced systems 

The recursive algorithm Eq. (3) was derived without 
involving the stack BC, which means a stack’s GTSM is 
calculated once for all possible passive surrounding media, 
that can be specified after the recursions in order to 
determinate the proper modes. The same is true for 
obtaining responses to a monochromatic excitation of 
various kinds on either or both sides. To be definite, we 
assume from now on that all layers of finite thickness are 
contained in the stack and, consequently, on either side of 
the stack only a homogeneous half space can exist which is 
allowed to be a vacuum or a piezoelectric solid. Let the 
stack’s layers be numbered from n=1 to N≥2, which implies 
that m=N−1 in Eqs.(2) and (3), and that the top and bottom 
media take on the number 0 and N+1, respectively. Any 
mechanically stress-free or clamped and electrically open or 
shorted stack surface conditions can be described by the 
CSIM of a passive external half space. By applying the 
continuity of the state vector at both external surfaces of the 
stack, we obtain a global system: 
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In Eq.(6), −
DNy  instead of +

DNy  is considered as unknown 
in order to avoid a potential overflow as fhN→∞, which 
would occur if the factor 1)( −D

Ne  instead of D
Ne  was 

present within the system matrix. Non trivial solutions 
require setting to zero the system determinant, yielding a 
form of the so-called characteristic function whose zeros 
define the values of ω-k pair for the proper mode solutions. 
When s1;N−1 has no poles, the determinant Δ6 of Eq.(6) is 
pole-free because all matrices x

nG  are. With piezoelectric 

solid half spaces, I
0G  and D

N 1+G  are the same as x
nG  

defined after Eq.(5); with a top vacuum, v
I GG =0 , and 

with a bottom vacuum, v
D
N GG −=+1 . Gv is a 4-

dimensional null matrix except for the (4,4)-element, which 
is equal to j|s1|ε0 coming from vacuum permittivity-
generated electrical fields. The cases of clamped and 
metallized surfaces are not considered here. 
Although the proper modes can be determined by Eq. (6), 
the involved system matrix size is relatively large, 16 

against 8 for the GTSM, or 4 for the surface impedance. 
When the bottom half space is a piezoelectric solid, the s-
matrix defined in Eq.(2) can be extended to include it so 
that n varies from 1 to N+1 and m=N in Eq.(3). After 
substituting N by N+1 in Eq.(6) and accounting for 

0y =±
+1IN  (primary assumption that no inverse modes 

existent in a bottom half space), we can eliminate 
successively −

+1DNy  and −
1Iy  in an adequate (not arbitrary) 

way to arrive at the most-reduced system without 
introducing poles: 
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1
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If the top half space is a piezoelectric solid, a reduced pole-
free system similar to Eq.(7a) can be obtained. Considering 

the total stack matrix s0;N−1 and 0y =±
0D  in Eq.(6) allows 

us to obtain 
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  (7b) 
In both cases, only one sub-matrix of the GTSM is 
involved, and the determinant Δ7 from Eq.(7a) or Eq.(7b) 
introduces no poles in spite of a much reduced system size.  
With a free stack (vacuum-surrounded), no way exists to 
obtain Eq.(7) without introducing poles. More generally, 
for any external half spaces, we can eliminate the input 

amplitudes +
INy  and −

1Dy  from Eq.(6) to obtain a reduced 
system for the only output amplitudes: 
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In Eq.(8), 22
0R  and 11

NR  are those given by Eqs.(5d) and 
(5a) with n=0 and N, respectively. When both the top and 
bottom half spaces are the vacuum and the stack surfaces 

are electrically open, v
D
N

I GGG =−= +10 . The matrix C 

involved in 22
0R  becomes D

v 1GGC −=−  and C in 11
NR  

becomes v
I
N GGC +=+ , cf. Eq.(5). C± are singular for 

some particular values of the slowness s1, giving rise to 
additional poles in the system determinant Δ8 of Eq. (8). 
These poles are associated with the solutions of SAW 
which would exist at the top (bottom) surface of a bottom 
(top) half space of the same material as the layer 1 (N). 

4 Numerical features and advantages 
of the s-matrix formalism 

In the previous section, we have shown that the 
characteristic function can appear in different forms for a 
given BC problem. Now we show that, though all of these 
functions give the same proper modes, their numerical 
behaviors can be radically different. Their numerical 
features are compared, through examples, for various 
matrix formalisms and for various forms of the same s-
matrix. In all numerical examples, the stack is assumed to 
be made of arbitrarily oriented ZnO and LiNbO3 materials, 
and the individual layer thickness to be hn=1 μm. 
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Figure 1 shows for a 2-layer ZnO/LNO plate and a 
moderate fh=1000 m/s the characteristic functions obtained 
by four different formalisms: s-matrix via Eqs. (6) and (8), 
Z-, and T-matrix. The curve dips represent either true (plate 
modes) or pseudo zeros (SSBW). We observe 5 true zeros, 
which are common on all 4 curves, 6 pseudo zeros, 3 for 
each material, to which only the s-matrix is sensible, and 2 
poles associated with the Z-matrix as well as 2 poles with 
the s-matrix via Eq.(8). With the s-matrix, Δ6 is pole-free; 
the poles of Δ8 are originated from the SAW modes which 
would exist at the surface of a half space of ZnO and LNO, 
respectively. The poles of Z-matrix are not due to the SAW 
modes, but do correspond to plate modes associated with 
some exotic BC. The T-matrix formalism we used is the 
one involving no inversion of any sub-matrices Tij of T, 
i.e., [T11Gv+T12+Gv(T21Gv+T22)]V1

−=0, and so is pole-free. 
Any other forms of the T-matrix formalism introduce poles 
as well. For this moderate fh value, the superiority of the s-
matrix over the T- and Z-matrix is not obvious because the 
stability issue is not involved and a few poles do not bother 
much the observation of zeros. 

Figure 2 shows results of s-matrix formalisms for fh=10000 
and 1 m/s, compared with the Z-matrix. The T-matrix result 
is not presented due to its instability. The A0-like mode 
tends to SAW in slow ZnO. It manifests as a dip in Δ6-
curve, but is not easy to be observed in Δ8-curve. In fact, 
the SAW-related singularity of Δ8-curve is a zero-pole pair. 
The Z-matrix formalism remains stable, but many poles are 
present, making it difficult to graphically observe and 
numerically locate the zeros hidden behind densely 
displayed poles. The poles arising with the Z-matrix are not 
easy to be removed because the same determinant giving 
rise to poles possesses also zeros. At extremely low fh=1 
m/s, on the other hand, only one plate (A0-like) mode exists 
along with the 6 pseudo zeros due to SSBW, and the s-
matrix remains stable, as seen in (2,2)-subplot. The position 
of poles does not vary with the fh values in Figs. 1 and 2, 
proving that they are not related to the internal resonant 
modes. This is in contrast to the T-matrix for which the 
matrix operations-introduced poles appear only above a 
threshold fh value, and to the Z-matrix for which the exotic 
BC-related poles depend on fh. 

Fig. 2. Same plate as Fig. 1 but for fh=10000 m/s. (1,1)-subplot: plate modes given by s-matrix, no poles of Δ8 are observed; 
(1,2)-subplot: zoomed view around s1=4.269e-4 s/m showing a zero-pole pair of the Δ8-curve; (2,1)-subplot: a lot of poles mixed 

with zeros by Z-matrix; (2,2)-subplot: s-matrix remaining stable for extremely low fh=1 m/s; two poles in Δ8-curve are due to 
SAW in either material of the stack.

Fig. 1. Four different formalisms 
for a 2-layer plate of (10,20,30)-
ZnO/LNO with fh=1000 m/s. 5 
true zeros (plate modes) are 
common on all curves, 6 pseudo 
zeros are present in the s-matrix 
formalisms (indicated by arrows 
at s1=4.03, 3.53, and 1.87 for 
the 3 SSBW of ZnO and at 
s1=2.49, 2.44, and 1.36 for the 3 
SSBW of LNO). The Z- and the 
reduced s-matrix by Eq.(8) 
possess poles. 
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Our s-matrix formalism also gave successful and 
spectacular results for fh=100000 m/s [14]. No bad matrix 
condition was reported by MATLAB during computations 
of Δ6. 4500 uniform samplings were sufficient for us to well 
discriminate a total of 310 modes: 2 SAW and 6 SSBW, 
along with 302 plate modes. At this regime, neither the T- 
nor the Z-matrix were able to give a curve having such nice 
functional features as pole-free, numerically stable, and 
keeping a rather steady magnitude over the entire interested 
range of s1. With the same ZnO layer but a half space LNO, 
we obtained 37 quasi-guided modes in ZnO layer between 
s1=(3.53, 4.03), and 76 true SAW modes between s1=(2.44, 
3.53). Some dips between s1=(1.3, 1.9) above the cut-off 
slowness of the slow shear bulk wave of LNO, due to 
pseudo SAW, were also observed. 
Results of a 3-layer ZnO/LNO/ZnO plate for a moderate 
fh=1000 m/s in Fig. 3 were obtained by using both Δ6 and 
Δ8, along with the results of Z and T matrices for 
comparison. We notice that SSBW modes of LNO material 
are absent, probably because the wave amplitudes of the 

middle LNO layer do not appear explicitly in Eqs. (6) and 
(8). We observe that the T-matrix curve grows rapidly with 
s1 when some s2 are complex, which happens even in stable 
regimes. The growth is especially rapid with high fh, and 
this is so with or without a substrate. 
Results for the same 3-layer plate but terminated on an 
additional LNO substrate are given in Fig. 4. The T-matrix 
is compared with 2 different s-matrix characteristic 

functions: Δ7 and IRs −≡Δ − 22
0

1;1
11sub8

N  resulted from 

Eq.(8) with 0y =−
DN . As expected, Δ7 is pole-free and 

Δ8sub exhibits a pole originated from the matrix 22
0R  with 

v
I GG =0 , due to the SAW mode which would exist at the 

surface of ZnO half space. Again, the 3 SSBW of ZnO are 
obvious, but SSBW modes of LNO material are not. We 
underline that SSBW position keeps unchanged in 2- and 3-
layer stacks, with and without a substrate.  
 

Fig. 3. 3-layer plate with fh=1000 m/s. 7 zeros (plate modes) are common on all curves, only 3 pseudo zeros (SSBW in ZnO, 
same as in Fig. 1) manifest with the s-matrix. Poles are present with the Z- and the reduced s-matrix via Eq.(8). 

Fig. 4. 3-layer plate (same as Fig. 3) with an additional LNO substrate. The 4 true zeros after 2.54 are true SAW modes (marked 
S1,2,3,4), as clearly shown by the T-matrix; ?PS1,2 indicate 2 pseudo SAW. The curve obtained by modified Eq.(8) exhibits 1 pole. 

Only observable are 3 SSBW of ZnO, same as in Fig. 3 and not marked. 
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5 Conclusion 

The presented comprehensive s-matrix approach allows us 
to analyze easily a layered stack considered alone or in 
combination with a solid substrate at either or both of its 
sides, described in terms of its CSIM. Compared with other 
matrix formalisms, the s-matrix provides pole-free 
characteristic functions, like the T-matrix, but does not 
suffer from the numerical instability even for fh=100000 
m/s. Though the Z-matrix also gives stable results, the 
intrinsic poles due to some exotic BC without practical 
interests trouble the graphic observation and the numerical 
location of zeros for high fh values. The reflection R-
matrix, which is a stable partial s-matrix formalism, also 
suffers from poles, in addition to the need of incorporating 
the stack BC of the beginning side into the recursions at the 
outset and repeating the recursions whenever the BC is 
modified even for the same stack. The total s-matrix we 
developed is the only known formalism that is numerically 
stable and pole-free. The size-reduced systems we derived 
in Eq. (7), for stacks surrounded by at least one 
homogeneous piezoelectric half space, is expected to also 
be pole-free for most material configurations except for 
ones where the interfacial wave is pertained. When the 
stack is surrounded by a vacuum at both sides, any reduced 
system introduces poles, originating from the SAW solution 
for a layered half space terminated by a free surface. 
Another feature of the s-matrix resides in its sensitivity to 
SSBW modes that are usually absent in the Z- and T-matrix 
formalisms. The s-matrix formalism allows the SAW-like 
solutions appearing in the extremely high “fh” regime not to 
be lost by including the wave amplitudes in both the top 
and bottom layers in the characteristic system, at the price 
of dealing with 16-dimensional matrices to maximum. 
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