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Since a robot is deployed in various kinds of environments, the robot audition system should work with
minimum prior information on environments to localize, separate and recognize utterances by multiple
simultaneous talkers. For example, it should not assume either the number of speakers, the location
of speakers for sound source separation (SSS), or specially tuned acoustic model for automatic speech
recognition (ASR). We developed “HARK” portable robot audition that uses eight microphones installed
on the surface of robot’s body such as Honda ASIMO, and SIG-2 and Robovie-R2 at Kyoto University.
HARK integrates SSS and ASR by using the Missing-Feature Theory. For SSS, we use Geometric
Source Separation and multi-channel post-filter to separate each utterance. Since separated speech
signals are distorted due to interfering talkers and sound source separation, multi-channel post-filter
enhanced speech signals. At this process, we create a missing feature mask that specifies which acoustic
features are reliable in time-frequency domain. Multi-band Julius, a missing-feature-theory based ASR,
uses this mask to avoid the influence of unreliable features in recognizing such distorted speech signals.
The system demonstrated a waitress robot that accepts meal orders placed by three actual human talkers.

1 Introduction

Listening to several things at once is a people’s dream
and one goal of AI and robot audition, because psy-
chophysical observations reveal that people can listen
to at most two things at once [1, 2]. Robot audition, or
the robot’s capability of listening by its own ears (mi-
crophones), is therefore an essential intelligent function
for working in a daily environment in symbiosis with
human. Since robots encounter various kinds of sounds
and noises, robot audition should be able to recognize
a mixture of sounds. The capability of listening to sev-
eral things at once will increase the usability of robots,
for instance, in assisting hearing-impaired or elder peo-
ple. In addition, robots are deployed in various environ-
ments, in particular, dynamically changing ones, robot
audition system should depend on minimum prior infor-
mation about its deployment.

Robot audition system usually integrates various kinds
of modules including sound source localization (SSL),
sound source separation (SSS), and automatic speech
recognition (ASR). The goals of robot audition system
are summarized as follows:

1. Extensible for adding and replacing modules,
2. Minimum prior information for each modules,
3. Portability for various robot configurations, and
4. Real-time processing.

In other words, the technical issues in robot audition
system focus on system-integration technology as well
as individual technologies.

Related Work Research on robot audition has been
active recently. IEEE Robotics and Automation Soci-
ety and Robotics Society of Japan have provided or-
ganized sessions on robot audition since 2004. Robot
audition community exploited a physical body of robot
to improve the performance of sound source localization
and separation. One good example of behavioral intel-
ligence in robot audition is active audition [4, 3], which
improved SSL and SSS by integrating these subsystems
with active motion such as turning to a target sound
source and/or visual processing.

Most robot audition research focused on SSL, and
only a few on SSS and ASR. Nakadai et al. [5] used a
pair of microphones embedded in ear parts of humanoid
robot SIG. It succeeded in listening to three simulta-
neous utterances with a set of speaker- and direction-
dependent acoustic models for ASR. Since their system

needed a lot of prior information, it was difficult to de-
ploy their robot to other environments. Valin et al.
[6] have developed a microphone array system called
“Manyears”. It used steered beamformer to localize
and used Geometric Source Separation (GSS) to sep-
arate sound sources. Eight microphones were placed
on each vertex of a cubic. Valin and Yamamoto inte-
grated Manyears and Missing Feature Theory (MFT)
based ASR and reported preliminary results [7]. The
microphones were embedded on the body of SIG2.

In signal processing community, a lot of methods in
addition to GSS have been proposed to improves the
SNR of the input speech signals before performing ASR
[9, 10, 11]. GSS relaxes the limitation on the relation-
ship between the number of sound sources and micro-
phones. It can separate up to N − 1 sound sources with
N microphones, by introducing “geometric constraints”
obtained from the locations of sound sources and the mi-
crophones. This means that GSS requires sound source
directions as prior information. Given accurate sound
source directions, GSS shows comparable performance
with ICA (Independent Component Analysis). Usually
ICA with more microphones costs more in computation,
and thus is difficult for real-time processing. For near-
field sound source localization, MUSIC (MUltiple SIgnal
Classification) outperforms steered beamformer [9].

Robot audition may be viewed as “noise-robust hands-
free ASR” from signal processing community. Its com-
mon approach is the use of an acoustic model for ASR
trained with noise adaptation techniques [8]. This ap-
proach won’t work in dealing with unknown noises or in
recognizing extremely noisy speech captured by a robot-
embedded microphone.

Usually multi-channel sound source separation tech-
niques such as GSS cause spectral distortion. Such a
distortion affects acoustic feature extraction for ASR,
especially the normalization processes of an acoustic fea-
ture vector, because the distortion causes fragmentation
of the target speech in the spectro-temporal space, and
produces a lot of sound fragments. To reduce the in-
fluence of spectral distortion for ASR, we employed two
techniques; a multi-channel post-filter and white noise
addition with missing-feature theory based ASR.

This paper reports the robot audition software sys-
tem called “HARK” (HRI-JP Audition for Robots with
Kyoto Univesity. The word “hark” stands for “listen”.).
It focuses on the refinements of each module and their
integration and evaluates the performance of recogniz-
ing three simultaneous talkers.
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Figure 4:
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Figure 5: Overview of the real-time robot audition system

2 HARK Robot Audition System

The robot audition software system, HARK, consists of
six modules as shown in Figure 5: Sound Source Localiza-

tion (SSL), Sound Source Separation (SSS), Parameter Selec-

tion, Acoustic Feature Extraction, Automatic Missing Feature

Mask Generation, and Missing Feature Theory based Auto-

matic Speech Recognition (MFT-ASR). We used MUSIC for
SSL, GSS for SSS, and Multi-band Julis for MFT-ASR.

HARK allows various kinds of microphone configu-
ration. Figures 1– 4 show an 8-ch microphone array
embedded in Humanoid SIG2, Robovie R2, and Honda
ASIMO or a 7.1-ch surround microphone, H2Pro, of
Holosound Inc. The positions of the microphones are bi-
laterally symmetric for all of them. This is because the
longer the distance between microphones is, the better
the performance of GSS is. We used GSS, which requires
only the 3D position of each microphone.

The five modules except MFT-ASR are implemented
as component blocks of FlowDesigner [12], a free data
flow oriented development environment. The reason
why MFT-ASR is treated separately is twofold; First, it
needs a heavy CPU load in recognizing speech. Second,
it uses a light-weighted data format in communication
with the other modules. It uses acoustic features and
MFM for communication with the other modules, while
the other modules use raw signal data for their commu-
nication. FlowDesigner and Multiband Julian may run
separately on different CPUs, since they can communi-
cate with each other via a network.

Since the five modules communicate with each other
a large amount of data, that is, raw signal data, the re-
duction of communication traffic is critical in real-time
processing. FlowDesigner provides the mechanism of
sharing data on a shared memory between modules. It
also provides the re-usability of modules for rapid pro-
totyping.

When two blocks have matching interfaces, they can
be connected regardless of their internal processes. One-
to-many and many-to-many connections are also possi-
ble. Thus, complex applications can be built simply by
combining small reusable blocks. A block is coded in
C++ and implemented as an inherited class of the fun-
damental block. It is compiled as a shared object on
Linux. Since data communication is done by a function
call with a pointer, it is faster than other middleware
which use a communication buffer such as shared mem-
ory and a socket.

FlowDesigner, thus, achieves a well-balanced trade-
off between independence and processing speed. Be-

cause a large amount of data is communicated in HARK,
FlowDesigner is suitable for it. In fact, SSS in Figure 5
has the heaviest traffic, which requests a large band-
width of 12.8 Mbps for input and 8 Mbps for output.

2.1 Signal Processing Components

Sound Source Localization (SSL) HARK provides
two SSLs: MUSIC and geometrical refinement method.
The latter is a steered beamformer included in Manyears.
MUSIC is a frequency-domain adaptive BF method. It
outperforms the latter in the real world, in particular,
in near fields, because a sharp local peak corresponding
to a sound source direction is obtained from the MUSIC
spectrum. Our implementation uses impulse responses
measured every 5 degrees, which were used to calculate
a correlation matrix.

Sound Source Separation (SSS) SSS consists of
GSS and the multi-channel post-filter as [13]. We mod-
ified the original GSS proposed by Parra [11] in or-
der to speed up adaptation by using stochastic gradient
and shorter time frame estimation. Our implementa-
tion avoids divergence caused by numerical errors in-
cluding division-by-zero and speeds up by simplifying
some equations.

The multi-channel post-filter [13] is used to enhance
the output of GSS (Figure 6). It is based on the optimal
estimator originally proposed by Ephraim and Malah
[14]. We extend the original method to support multi-
channel signals so that they can estimate both station-
ary and non-stationary noise. These estimations are
used to generate a missing feature mask.

In spite of these simplification, HARK implementa-
tion of SSS attained almost the same performance as
Manyears’ implementation. SSS improved 10.3 dB in
signal-to-noise ratio on average for separation of three

Figure 6: Scheme of Multi-Channel Post-Filter
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simultaneous speech signals [13]. After separation, a
white noise was added with a half power of the back-
ground noise.

White Noise Addition We exploit covering a dis-
tortion in any frequency band by adding a white noise,
a kind of broad-band noises, to noise-suppressed speech
signals. This idea is motivated by the psychological ev-
idence that noise helps perception, which is known as
auditory induction. It is known that in the human au-
ditory system noises that pad temporal gaps between
sound fragments help auditory perception organization.

This evidence is also useful for ASR, because an ad-
ditive noise plays a roll to blur the distortions, that is,
to avoid the fragmentation. Actually, the addition of a
colored noise has been reported to be effective for noise-
robust ASR [15]. They added office background noise
after spectral subtraction, and showed the feasibility of
this technique in noisy speech recognition.

In accordance with this addition of a white noise,
we use an acoustic model trained with clean speech and
white-noise-added speech. Thus, the system is able to
assume only one type of noise included in speech, that
is, white noise. It is easier for ASR to deal with one
type of noise than various kinds of noises, and a white
noise is suitable for ASR with a statistical model.

2.2 MFT Based Integration

Several robot audition systems with preprocessing and
ASR have been reported so far [16, 17]. Those systems
just combined preprocessing with ASR and focused on
the improvement of SNR and real-time processing.

Two critical issues remain; what kinds of preprocess-
ing are required for ASR, and how does ASR use the
characteristics of preprocessing besides using an acous-
tic model with multi-condition training. We exploited
an interfacing scheme between preprocessing and ASR
based on MFT.

MFT uses missing feature masks (MFMs) in a temporal-
frequency map of reliability to improve ASR. Each MFM
specifies whether a spectral value for a frequency bin at
a specific time frame is reliable or not. Unreliable acous-
tic features caused by errors in preprocessing are masked
using MFMs, and only reliable ones are used for a like-
lihood calculation in the ASR decoder. The decoder is
an HMM-based recognizer, which is commonly used in
conventional ASR systems. The estimation process of
output probability in the decoder is modified in MFT-
ASR.

Let M(i) be a MFM vector that represents the reli-
ability of the i-th acoustic feature. The output proba-
bility bj(x) is given by the following equation:

bj(x) =
L∑

l=1

P (l|Sj) exp

{
N∑

i=1

M(i) log f(x(i)|l, Sj)

}
,

(1)
where P (·) is a probability operator, x(i) is an acous-
tic feature vector, N is the size of the acoustic feature
vector, and Sj is the j-th state.

MFT-based methods show high robustness against
both stationary and non-stationary noises when the re-
liability of acoustic features is estimated correctly. The

main issue in applying them to ASR is how to estimate
the reliability of input acoustic features correctly. Be-
cause the distortion of input acoustic features are usu-
ally unknown, the reliability of the input acoustic fea-
tures cannot be estimated. To estimate MFM, we used
Mel-Scale Log Spectrum (MSLS) [18] as an acoustic fea-
ture and developed an automatic MFM generator based
on the multi-channel post-filter.

Mel-Scale Log Spectrum Features To estimate re-
liability of acoustic features, we have to exploit the fact
that noises and distortions are usually concentrated in
some areas in the spectro-temporal space. Most con-
ventional ASR systems use Mel-Frequency Cepstral Co-
efficient (MFCC) as an acoustic feature, but noises and
distortions are spread to all coefficients in MFCC. In
general, Cepstrum based acoustic features like MFCC
are not suitable for MFT-ASR, Therefore, we use Mel-
Scale Log Spectrum (MSLS) as an acoustic feature.

MSLS is obtained by applying inverse discrete co-
sine transformation to MFCCs Then three normaliza-
tion processes are applied to obtain noise-robust acous-
tic features; mean power normalization, spectrum peak
emphasis and spectrum mean normalization. The de-
tails are described in [18]. These three normalization
processes correspond to three normalization performed
against MFCC; C0 normalization, liftering, and Cep-
strum mean normalization.

Automatic MFM generator Most reports on MFT
have focused on a single channel input, so far. It is
difficult to obtain information enough to estimate the
reliability of acoustic features in a single channel ap-
proach. A multi-channel approach using a microphone
array alleviates this difficulty. We developed an auto-
matic MFM generator by using GSS and a multi-channel
post-filter with an 8-ch microphone array.

The missing feature mask is a matrix representing
the reliability of each feature in the time-frequency plane.
More specifically, this reliability is computed for each
time frame and for each Mel-frequency band. This re-
liability can be either a continuous value from 0 to 1
(called “soft mask”), or a binary value of 0 or 1 (called
“hard mask”). In this paper, hard masks were used.

We compute the missing feature mask by comparing
the input and the output of the multi-channel post-filter.
For each Mel-frequency band, the feature is considered
reliable if the ratio of the output energy over the input
energy is greater than threshold T . The reason for this
choice is based on the assumption that the more noise
present in a certain frequency band, the lower the post-
filter gain will be for that band. The continuous missing
feature mask mk(i) is thus computed as follows:

mk(i) =
Sout

k (i) + Nk(i)
Sin

k (i)
, (2)

where Sin
k (i) and Sout

k (i) are the post-filter input and
output energy for frame k at Mel-frequency band i, and
Nk(i) is the background noise estimate for that band.
The main reason for including the noise estimate Nk(i)
in the numerator of Eq. (2) is that it ensures that the
missing feature mask equals 1 when no speech source is
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present. Finally, we derive a hard mask Mk(i) as follows:

Mk(i) =
{

1 if mk(i) > T,
0 otherwise

where T is an appropriate threshold.

3 Evaluation of HARK

We evaluated the robot audition system in terms of the
performance of three simultaneous speech recognition.

3.1 MFT and White Noise Addition

To evaluate how MFT and white noise addition improve
the performance of automatic speech recognition, we
conducted isolated word recognition of three simulta-
neous speech. In this experiment, Humanoid SIG2 with
an 8-ch microphone array was used in a 4 m × 5 m room.
Its reverberation time (RT20) was 0.3–0.4 seconds.

Three simultaneous speech for test data were recorded
with the 8-ch microphone array in the room by using
three loudspeakers (Genelec 1029A). The distance be-
tween each loudspeaker and the center of the robot was
2 m. One loudspeaker was fixed to the front (center)
direction of the robot. The locations of left and right
loudspeakers from the center loudspeaker varied from
±10 to ±90 degrees at the intervals of 10 degrees. ATR
phonemically-balanced word-sets were used as a speech
dataset. A female (f101), a male (m101) and another
male (m102) speech sources were used for the left, cen-
ter and right loudspeakers, respectively. Three words
for simultaneous speech were selected at random. In
this recording, the power of robot was turned off.

By using the test data, the system recognized the
three speakers with the following eight conditions:

(1) The raw input captured by the left-front micro-
phone was recognized with the clean acoustic model.

(2) The sounds separated by SSS were recognized with
the clean acoustic model.

(3) The sounds separated by SSS were recognized with
MFM generated automatically and the clean acous-
tic model.

(4) The sounds separated by SSS were recognized with
automatically generated MFM and the WNA acous-
tic model.

(5) The sounds separated by SSS were recognized with
automatically generated MFM and the MCT acous-
tic model.

(6) The sounds separated by SSS were recognized with
a priori MFM and the clean acoustic model .
Since this mask is ideal, we consider its result as
the potential upper limit of HARK.

The clean acoustic model was trained with 10
male and 12 female ATR phonemically-balanced word-
sets excluding the three word-sets (f101, m101, and m102)
which were used for the recording. Thus, it was a speaker-
open and word-closed acoustic model. The MCT acous-
tic model was trained with the same ATR word-sets
and separated speech datasets. The latter sets were gen-
erated by separating three-word combinations of f102-
m103-m104 and f102-m105-m106, which were recorded

Table 1: Word correct rate (WCR in %) of the center
speaker according to each localization method

Acoustic model White noise addition Clean model
Interval 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

given 90.0 88.5 91.0 85.0 84.5 87.0
steered BF 82.3 90.5 89.0 65.5 70.6 72.4
MUSIC 86.0 83.3 86.7 57.0 74.0 64.5

in the same way as the test data. The WNA acous-
tic model was trained with the same ATR wordsets as
mentioned above, and the clean speech to which white
noise was added by 40 dB of peak power. Each of these
acoustic models was trained as 3-state and 4-mixture
triphone HMM, because 4-mixture HMM had the best
performance among 1, 2, 4, 8, and 16-mixture HMMs.

The results were summarized in Figure 7. MFT-
ASR with Automatic MFM Generation outperformed
the normal ASR. The MCT acoustic model was the
best for MFT-ASR, but the WNA acoustic model
performed almost the same. Since the WNA acous-
tic model does not require prior training, it is the most
appropriate acoustic model for robot audition. The per-
formance at the interval of 10-degree was poor in partic-
ular for the center speaker, because any current sound
source separation methods fails in seprating such close
three speakers. The fact that A priori mask showed a
quite high performance may suggest not a few possibil-
ities to improve the algorithms of MFM generation.

3.2 Sound Source Localization Effects

This section evaluates how the quality of sound source
localization methods including manually given localiza-
tion, steered Beamformer and MUSIC affects the perfor-
mance of ASR. SIG2 used steered BF. Since the perfor-
mance MUSIC depends on the number of microphones
on the same plane, we used Honda ASIMO shown in
Figure 4, which was installed in a 7 m × 4 m room. Its
three walls were covered with sound absorbing materi-
als, while the other wall was made of glass which makes
strong echoes. The reverberation time (RT20) of the
room is about 0.2 seconds. We used the condition (6)
in Section 3.1, and used three methods of sound source
localization with clean and WNA acoustic models.

The results of word correct rates were summarized in
Table 1. With the clean acoustc model, MUSIC out-
performed steered BF, while with the WNA acoustic
mode, the both performances were comparable. In case
of given localization, improvement by white noise ad-
dition training was small. On the other hand, training
with white noise addition improved word correct rates
greatly for both steered beamformer and MUSIC. We
think that the ambiguity in sound source localization
caused voice activity detection more ambiguous, which
degraded the recognition performance with the clean
acoustic model. On the other hand, white noise addi-
tion to separated sound with the WNA acoustic model
reduced such degradation.
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(a) The left speaker (b) The center speaker (c) The right speaker
Figure 7: Word correct rates of three simultaneous speakers with our system

Figure 8: Meal orders Figure 9: Rock-paper-scissors
sound game

3.3 Three Simultaneous Talkers

Figure 8 demonstrates that when three actual human
talkers place a meal order at the same time, the robot
audition system recognizes each meal order and confirms
their orders one by one and tells the total amount of
the orders. The real-time implementation reduces the
response time from 8.0 sec to 1.9 sec. The main factor
of delay of 1.9 sec is caused by the detection of end of
utterance. If the same input is given by an audio file,
the response time is about 0.4 sec.

We measured processing time by recognizing speech
signals of 800 seconds. The total processing time on
Pentium 2.4GHz CPU was 499 sec (130 sec for ASR and
369 sec for others) with 0.446 sec of output delay. As a
whole, HARK runs almost in real time.

Another application demonstrates a rock-paper-scissors
sound game Figure 9 where ASIMO recognizes three si-
multaneous utterances and judged who won the game
by using only speech information.

4 Conclusion

This paper described the portable real-time robot audi-
tion software, HARK. The key technology is MFT-based
integration of sound source separation and MFT-based
ASR by automatically generating missing feature masks.
We showed the effectiveness of HARK through several
experiments, and the conventional noise-robust ASR ap-
proaches such as only the use of a multi-condition trained
acoustic model, and/or a single channel preprocessing
have difficulty in realizing robot audition. HARK in-
stalled on three robots demonstrates potential capabili-
ties such as interactions with multiple people and audi-
tory scene visualizer. HARK is available at the URL of

http://winnie.kuis.kyoto-u.ac.jp/HARK/.
Several detail experiments are still missing. The ro-

bustness against speech contaminated non-speech direc-
tional noise sources like music, and reverberation should
be evaluated.
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