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The characteristics of four saxophone reeds are investigated. Therefore, a time-dependent Finite-Element model 
of the mouth/reed/mouthpiece system of an alto saxophone is built. A coupling of the differential equations is 
used for the air flow, the reed vibration, and the change of geometry of the air flow by the reed vibrations. The 
four reeds are a standard reed and three deviations. All other parameters are kept the same for all reeds to make 
the reed movements comparable. Clear differences of the reed sounds are found showing different spectral 
amplitude behaviour in terms of the 3 kHz formant region, higher harmonics and the speed to reaction the reeds 
show with back coming impulses. Furthermore, the turbulence in  the mouthpiece could be shown to be that 
high, that the assumption of the standard model for single reed vibrations is reasonable when setting the pressure 
inside the mouthpiece equal to the pressure in the tube. Also the amount of movement along the reed lengths 
could be shown to differ between the reeds and so the idea of the altered reeds to be more flexible in certain 
regions are discussed.  

1 Introduction 

The saxophone or the clarinet are single reed instruments. 
Different reeds are used by players to obtain different 
sounds. The reeds can differ in overall thickness or in 
overall geometry. This study investigates the role of 
different geometries of alto saxophone reeds. Four different 
reeds are used (see section Method), a standard reed and 
three derivatives which are used today by saxophone 
players. 
 
To investigate this problem, the time dependent behaviour 
of saxophones need to be considered. The nonlinear model 
of the flow-reed interaction assumes a pressure difference 
between the mouth and the mouthpiece acting on the reed. 
Several analytical and experimental investigations show 
this behaviour (Dalmont 2007, 2003, da Silva 2007).  
 
Reeds often show a self-sustained oscillation as with harps 
or accordions. Also the saxophone or clarinet 
mouthpiece/reed system can show such vibrations even if 
not attached to the resonance tube. Then the periodicity is 
much higher than normal tones played on these instruments 
and, according to the mouthpiece length. Additionally, 
higher blowing pressure is needed to produce this kind of 
oscillation. Hirschberg discusses possible reasons of the 
reed/mouthpiece system to be self-oscillating (Hirschberg 
1995). 
 
Another approach is to look at the system working with 
impulses produced by the mouth/reed/mouthpiece system. 
The blowing pressure of the mouth acts upon the reed on 
both sides, the side of the reed in the mouthpiece and the 
bottom reed side in the mouth cavity. The players lip 
touches the reed in such a way, that about 1.5 cm of the 
reed’s bottom is free in the mouth where the mouth 
pressure acts upon it. As the flow of air is fast when 
travelling through the tip of the mouthpiece, the pressure at 
the upper side of the reed is much lower than that on its 
bottom. This pressure difference between upper side and 
bottom side of the reed causes the reed to move upwards 
and therefore closes the mouthpiece tip. Because of this 
closing, a pressure impulse is produced. 
 
This impulse then travels along the tube and is partly 
radiated and partly reflected at the open sound whole or the 
saxophone bell. The reflected part of the impulse is 

travelling back and reaches the reed again. Here, it ‘shoots’ 
the reed open. The reed is again in an unstable condition 
then and the pressure difference between upper and bottom 
side of the reed causes it to close once more producing 
another pressure impulse which is again travelling down the 
tube. Here, a periodicity is established. Its length is 
determined by the time the impulse needs to travel back and 
forth the tube and therefore the player is able to determine 
the pitch of the instrument by using fingerings. 
 
Note, that the production side of mouth/reed/mouthpiece is 
not a self-sustained oscillation. The pressure gradient at the 
reed closes the reed. The reed would never open again by 
itself as the pressure in the mouth is always much higher 
than that in the mouthpiece. The back travelling impulse 
from the bell is needed to open it again. Now, the precise 
way, the reed opens or closes is determined by many 
factors. As in our discussion the reed is the focus of 
investigation, we need to keep all parameters constant and 
only change the reeds geometry to find out about the basic 
behaviour of different reeds. 
 
Aschhoff (Aschhoff 1936) was one of the first the discuss 
the acoustics of a clarinet. He asked, way it is the length of 
the tube determining the overall pitch of the system and not 
the mouth/reed/mouthpiece system. The answer is simply, 
that the reed is much more damped than the air column and 
therefore in this situation of two nonlinear coupled 
oscillators, the tube wins and forces the reed to vibrate with 
its periodicity. Only in cases where the reed is less damped 
like with harp or accordion reeds, a self-sustained 
oscillation can appear.  
 
Still the saxophone reed is oscillating for itself, too, where 
the fundamental frequency of saxophone reeds is known to 
be around 3 kHz. So this region has been proposed to be a 
kind of formant region, helping to identify saxophone 
tones. So what we expect to find is, that the reed reaches a 
stable state if no impulse is coming back the tube and, when 
shot open by a back impulse, is vibrating with some of its 
eigenvalues after the impulse is gone out again. 
 
Here some fundamental questions can be answered: 
 

A) How do different reeds differ in their way of 
vibration when shot open by an impulse? 

B) Is there a formant region for the reeds and how 
does it look like? 
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C) How differs the overall amplitude behaviour for 
different frequency regions? 

D) Are the reeds still fluctuating a bit producing the 
noise known from reed instruments or do they 
come to a rest between impulses? 

E) How much turbulence is present in the 
mouthpiece? Is it enough to set the pressure in the 
mouthpiece equal to the pressure in the tube as 
proposed by the standard model?  

F) How do different reeds react when played with 
different playing styles (soft, staccato, legato ect.)? 

 
Question E) is beyond the scope of this paper and left to 
further investigations.  

2 Method 

A 2D model of the reed, the air in the mouth, and the air in 
the mouthpiece was built with the mouthpiece of an alto 
saxophone. A time dependent Finite-Element calculation 
was performed coupling a Navier-Stokes equation for the 
flow, a stress-strain equation for the reed and a moving-
mesh model for the changing geometry of the flow 
according to the reed motion to model the different 
behaviour of the reeds. Fig. 1 shows the geometry of the 
model with the applied Finite Element mesh of triangular 
elements. The mouth was modelled in a way a saxophone 
player would do when laying the lips on the mouthpiece tip. 
So the air is modelled to 1.4 cm above and below the 
mouthpiece. The portion of the mouth air cavity which is 
below the mouthpiece ends at the reed and acts upon it. 
 

 
Fig. 1: Geometry of the model with mouth, mouthpiece, 

and reed. The inflow boundary condition is at the left of the 
mouth, at the right of the mouthpiece the tube would be 
attached. The reed is black and the undisplaced (normal) 
and displaced positions of the reed are shown. The reeds 

displacement causes a geometry change of the flow domain 
and therefore acts on the flow. 

 

2.1 Reeds 

Four different reeds were used according to models built by 
reed manufacturers. The manufacturer shall not be named 
here, only the basic differences between the reeds are of 
interest. The reeds all increase their thickness from the tip 
of the reed to its heel, which is 3 mm in thickness for all 
reeds. The reeds are named A, B, C and D here, where A is 
a traditional form which is relatively thin at the tip and 

relatively thick in the middle. B, C and D are alternative 
forms which are thicker at the tip and thinner in the middle. 
 

A) Tip thickness is 0.18 mm. Although the thinnest at 
the tip it is the thickest in the middle. 

B) Tip thickness is 0.275 mm. The thinnest of all in 
the middle, thicker at the tip as A and thinner as C 
and D. 

C) Tip thickness is 0.321 mm. Still thinner in the 
middle than A, but thicker here than B and thinner 
than D. 

D) Tip thickness is 0.325 mm. The thickest at the tip, 
still thinner than A in the middle, but thicker here 
than B and C. 

 
The reeds are all 4 cm in their raising thickness part, free to 
vibrate here and fixed at the adjacent heels. The idea behind 
the B to D reeds is to have a wider flexible part of vibration 
at the reed tip compared to the traditional form of A. Still 
differences are there between B, C, and D as the overall 
thickness increases here. The difference between C and D is 
much smaller than between B and C. So here we also can 
test the model. The kinds of vibrations between C and D 
must be more similar than those of B and C. 

2.2 Mouth and mouthpiece 

The mouthpiece is the same for all reeds. It leaves a 1 mm 
slit to the reed at its tip, then widening to 1.8 cm in 
diameter over a distance of 3.5 cm only then to be 
prolonged over a distance of 4.5 cm with this diameter. The 
mouth cavity  ends 1.4 cm ‘in’ the mouthpiece where the 
lips are placed at the top of the mouthpiece and at the 
bottom on the reed. The cavity itself is round and prolonged 
for 3 cm from the reed tip backwards. As the pressure and 
flow within the mouth is known - and confirmed by this 
calculation – to be more or less stable, the precise form of 
the mouth is not so much of importance here. Still it is used 
to change the sound of the saxophone or clarinet and need 
to be included in further calculations. But as we are 
interested in the sound of different reeds we want to keep 
the mouth geometry the same for all calculations. 
 

2.2 The model 

The reeds are modelled using a 2D stress-strain differential 
equation with four degrees of freedom, displacement and 
velocity in two directions.  
 
The air model is a Navier-Stokes model. It is well accepted 
that the Navier-Stokes equation also covers turbulence in 
Finite-Element or Finite-Volume models if only enough 
elements are used in the turbulent region. Alternative 
models taking turbulence into consideration, like the k-ε 
model of the Reynolds-Averaged-Navier-Stokes equation 
(RANS), can be performed with much less elements and 
therefore reduce calculation cost a lot (Bader 2005). But as 
we are also about to discover, if the model assumption of 
equal pressure in the mouth piece and the tube by assuming 
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large turbulence in the mouthpiece, it seems more 
appropriate to use a Navier-Stokes model with many 
degrees of freedom to visualize the turbulence itself. 
 
A third system of equations need to be used here. As the 
vibrating reed changes the geometry of the air itself in a 
decisive way, a time dependent formulation of a changing 
geometry need to be added. Here, a Laplace smoothing 
algorithm was used. Because of space restrictions in this 
paper we do not go into mathematical details here. Still the 
fundamental process of the model is as follows. 
 

A) The flow causes a pressure upon the reed. 
B) This pressure changes the reed displacement. 
C) The changed reed displacement means a geometry 

change for the flow as the inflow region between 
the reed tip and the mouthpiece tip changes. 

D) The changed flow geometry changes the flow. 
E) The changed flow is acting upon the reed again. 

So this E) is A) again. 
 
Note, that all steps A) to E) are calculated simultaneously at 
each time step as we use an implicit time stepping 
algorithm. So for each time step a linear equation system is 
solved taking all interactions into account. 
 
The coupling of the flow pressure upon the reed is 
modelled using Lagrange multipliers as additional 
dependent variables defined only at the flow boundaries of 
the reed. The same method was applied for the moving 
mesh equations to make the geometry changes of the flow 
stable and therefore add additional stability to these very 
complicated calculations. 
 
The boundary conditions of the air needed to be chosen 
according to the very difficult calculation needs. The 
pressure could not be taken as high as is realistic for normal 
playing conditions and was set to p=150 Pa at the boundary 
of the mouth. Still the results are very good and therefore 
the method was continued with this inblow pressure. 
 
The boundary at the tube’s end of the mouthpiece was 
modelled time-dependent. It was assumed, that outgoing 
impulses were reflected at the instrument’s bell and come 
back to the mouthpiece. There they ‘shoot open’ the reed 
and by that, another impulse is sent out to the tube again. A 
Gauss impulse was used as back coming impulse from the 
tube. The reaction of the incoming impulse by the reed is 
one of the aims of this investigation. The different reeds 
show different behaviour of reaction to an incoming 
impulse and therefore the impulse travelling out is different 
for each reed, too. This makes the differences in the sound 
of the reeds. 
 

3 Results 

Among the many interesting findings of the model three 
most important ones are discussed here briefly. 
 

3.1 Turbulence in the mouthpiece 

As shown in Fig. 3, indeed turbulence appears in the 
mouthpiece. This justifies the simplified model assumption 
of taking the pressure in the tube to be the pressure in the 
mouthpiece, as most of the energy is consumed in the 
mouthpiece and nearly no flow of air is reaching the tube. 
 

 
Fig. 3: Zoom into the reed region of the model for the A 

reed at 9 ms after model start. The contour lines show flow 
velocity where the background show pressure distribution 

(dark is low pressure, white is large pressure). The turbulent 
nature of the flow in the mouthpiece clearly appears. The 
reed is displaced here and just its boundaries are shown. 

 

3.2 Sound differences between the reeds 

The time varying displacements of the reed tips were used 
to obtain a time series for the outgoing pressure impulse. 
Fig. 4 shows the different impulses for the four reeds. 
 

 
Fig. 4: Time series of the tips of the reeds A – D for 9 ms of 
calculation time and two back impulses from the reed. The 
reeds A, C, and D show about the same overall amplitude 
while the much more thin reed B has increased amplitude. 
Also the time series differ in terms of vibration caused by 

the different reed geometries. 
 
The overall displacement amplitude is about the same for 
reeds A, B, and D and very different for reed B. This was 
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expected as B has much less material than all others as it is 
thinner in the middle and only thicker than A right at the 
tip. Still all reeds show differences with respect to the shape 
of the time series which result in different spectra.  
 
These spectra are shown in Fig. 5. Here, one period of reed 
displacement shown in Fig. 4 was used to construct a tone 
of 356 Hz by repeating the impulse shape in time. Then 
spectra for the time series of the four reeds were calculated 
by an FFT. As the pitch is arbitrary, the peaks of the spectra 
were connected to trajectories which are shown in Fig. 5.   

 

 
Fig. 5: Spectra of a 356 Hz tone constructed from the reed 
displacements, peaks connected. The reeds C and D drop 

amplitudes for very high frequencies. All show a peak 
around 3 kHz which is consistent with an eigenfrequency of 

the reeds. 
 

 
Fig. 6.: spectra of a 356 Hz tone as in Fig. 4 from 2 kHz to 
6 kHz. The reeds show different resonance frequencies and 
resonance shapes. The traditional reed A is more flat in this 

region where the reeds C and D have a clear sharp peak 
which is also higher than the A peak. Reed B shows a kind 

of plateau between 3 kHz and 4 kHz. 
 

Reeds do have a resonance frequency of 3 kHz. Below this 
they are passive systems which can be seen by the 
behaviour of all reeds below this region, they are all the 
same. Around 3 kHz the behaviour differs a lot. The 
massive reeds C and D have a sharp peak here and are more 
or less the same which corresponds to the fact that they do 
not differ very much in terms of their geometry. The 
traditional reed A shows a much lower resonance in this 
region which is more a plateau and therefore a resonance 
region. Still reed A has higher amplitudes than all other 
reeds beyond the 3 kHz region all through the highest 
frequencies. It therefore can be considered to be the most 
stable of all reeds in terms of the spectrum. Remember, that 
the key idea behind the reeds B to D is to make the reed tips 
more flexible. This seems to cause spectra which are more 
flexible, too. So with this resonance, the reeds reacts much 

more than the traditional one, in all other cases they are 
more calm. 
 
It is interesting to note, that the first harmonic of these 
reeds used here were calculated to be around 1.4 kHz. Only 
the second partial was around 3 kHz. It need to be 
investigated further if the reeds are ‘speeded up’ by the air 
pressure or if the resonance found in the spectra are caused 
by the second partial rather than the first one. 
 
Additionally, reeds C and D show a drop-off at higher 
frequencies from about 12 kHz on. This is not true for reed 
B. The reasons here are not clear yet, remember that reed B 
has least material. It could be because of higher damping 
because of the enhanced material. It is also interesting to 
note that reed B drops below all other reeds between the 
fundamental resonance region around 3 kHz up to about 12 
kHz. As the higher flexibility of the reeds are also thought 
to make initial transients faster and give the player a 
broader range of variation of tones, further investigations 
with different tone beginnings need to be done here to 
really get into the reaction behaviour of these reeds. Here, 
the boundary conditions of inflow would need to be 
changed in terms of slow amplitude rise, sudden changes in 
pressure ect. 

3.3 Behaviour of vibration along the reed 
length 

The flexibility of vibration of the reeds must change 
according to their different thickness structures. Fig. 7 
shows the time-averaged displacements for the four reeds 
over the vibrating length of the reed compared to reed A. 
Here the maximum displacement of the reed tips were 
normalized to make the movements comparable. Reed C 
and D are both more moving at their tips (left) compared to 
reed A. So indeed they are more flexible than A at their 
tips. Contrary to this, they are less moving near the heel. 
The enlarged mass at the tip of these reeds causes the 
enhanced vibration at this tip. Reed B has less mass all 
over. This leads to a more smooth movement of the whole 
reed. Comparing these averaged movements with the time 
series in Fig. 4, one can realize, that reed C and D have 
much more movements at the reed tip as reeds A and B.  

 
Fig. 7: Relative displacements of the reeds to the reference 

reed A over the reed length integrated over one impulse 
period in time (reed tip on the left). Note that the maximum 

displacements are normalized and so the much larger 
displacement of reed B shown in Fig. 4 is not considered. 

Reed B shows the largest negative difference all over where 
only reed C and D show a more flexible behaviour at the 

tip. 
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4 Conclusions 

The different reeds clearly show different behaviour. It is 
interesting to see, that the altered reeds B, C, and D show 
more pointed spectra than the standard model which is 
much more consistent over all amplitudes. This may be a 
reason for modern saxophone players to work with these 
reeds which show more ‘character’ than the standard 
geometry reed. The spectral fluctuations at higher 
harmonics with the reeds C and D is surprising and need to 
be investigated further. Still all reeds show less amplitude 
in frequency regions beyond 4 kHz compared to the 
standard reed. 
 
Further investigations need to consider different playing 
styles like staccato to get an idea about the speed of 
reaction of the different reeds. We may get a first idea 
about that by comparing the speed of the different reeds 
they need to reach their stable state right from the start 
shown in Fig. 4. Astonishingly, reed A seems to be first. 
Reed C and D show a similar decay in their slope at the 
point reed A converges but they still keep rising. Reed B 
has a much higher amplitude and can therefore hardly be 
compared with the others. 
 
The model also shows much turbulence in the mouthpiece 
pointing to much damping of the flow there. It therefore 
seems indeed reasonable to set the pressure within the 
mouthpiece equal to the pressure in the tube as is proposed 
by the standard model of single reed behaviour. 
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