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This paper shows how Rayleigh’s Integral can be used to efficiently and rapidly calculate time-domain pressure 
waveforms and wavefronts radiated from a planar baffle due to axisymmetric normal impulse accelerations that 
converge toward or expand away from a fixed center of symmetry. These accelerations are prescribed with 
simple functional forms and histories. The Rayleigh Integrals are evaluated by Gaussian quadratures that seem 
peculiarly suited to the integrands. The acoustic fields are presented as ”snapshots” of pressure contours of the 
evolving wavefront structures emerging from the baffle surface, and as functions of time at given points. 
Significant insights are provided by graphs of slant range versus time that identify signal paths from the source 
points to the field points. The presented methods avoid the complexities inherent in more standard transform and 
harmonic source treatments. 

1 Introduction 

In his original derivation of the integral expression that 
bears his name, Rayleigh [1] employed solutions of the 
linear wave equation to formulate an integral describing 
small amplitude air pressure waves emitted by vibrations of 
a finite surface area in an infinite planar baffle.  In modern 
notation, the time-domain form of this integral can be 
written [2] 

 
where p is the acoustic pressure function at some field point 
off a planar baffle, dσ is the element of active area in the 
baffle surface, an is the normal component of surface 
acceleration at the retarded time t − R/a0 (and the source of 
the sound pressure), R is the distance between the field 
point and the surface element, and a0 and ρ0 are the speed 
of sound and density, respectively, of the ambient air, 
assumed uniform.   
Many theoretical developments and ideas about transient 
radiation from baffled surfaces have followed from this first 
exposition [3 − 10], but experimental work to verify that the 
Rayleigh integral can accurately account for acoustic 
pressure fields emitted by pulsed surfaces in the time 
domain is sparse. Banister and Hereford [11] have reported 
on  measurements of acoustic pulses at high altitudes above 
a ground surface impulsively moved upward by a buried 
underground explosion.  They carried out Rayleigh integral 
calculations using measured vertical motions of the ground 
as source functions, and accounted for the observed pulse 
measurements with moderate success. Two large and sharp 
vertical acceleration spikes that appear in most of their data 
suggest that the Rayleigh integral could predict real-world 
pulsed waveforms when Dirac delta functions are actually 
used as the source motion acceleration. 
In this proceedings paper, we investigate this concept and 
present mathematical details and graphical results of the use 
of Rayleigh's integral to compute acoustic fields generated 
by a delta function ring uniformly expanding away from a 
center of symmetry [12]. We also present wavefront and 
waveshape calculations for other types of impulse source 
configurations in the poster session of the conference. Our 
results suggest the intriguing possibility that the time-
domain Rayleigh integral for delta function type sources 
can be valid even at field points very close to the source 
plane.  The author feels that experimental investigation of 
this possibility would be an extremely worth while effort, 
and easily realized with current transducer technology. 

2 Mathematical Formulation 

We consider the Rayleigh integral for a planar impulse 
function source  such that its normal acceleration is a "delta 
function ring" distribution having the general axisymmetric 
form an = f(r)δ(t − g(r)), where f and g are functions of the 
radial distance r from a fixed center of symmetry in the 
plane. (Asymmetrically distributed motions are not treated 
here; others have reported Rayleigh integral developments 
for such cases, see, e.g. [6, 7, 9 ,10].)  We then specialize to 
the case where the ring radius r expands at a uniform radial 
velocity vs, that is, an = δ(t − r/vs), and the motion stops at a 
finite radius r = a.  (When vs becomes infinite, we recover 
the well-known case of the impulsively accelerated disk.) 
The geometry and coordinate system used here is shown in 
Figure 1, where the rigid baffle lies in the x−y plane, the 
source motion center lies on the y-axis at a distance b from 
the origin, and the field observation point is on the z-axis at 
a distance c above the baffle plane.  The source motions lie 
within a disk of radius a.  We represent the expanding 
impulsive ring by a circle of changing radius r in the x−y 
plane.  The area element dσ  is shown as a small oblong on 
this circle.  The distance from dσ  to the field point is 
represented by R, and that from the origin  to  dσ  by a line 
of  length ρ that makes an angle φ with the y-axis.  

 
Figure 1.  Geometry for the impulsive Rayleigh integrals 
presented in this paper.  The observation point is c units above the 
x−y plane and b units horizontally displaced from the source 
center of symmetry. 

 
The relations  R2 = ρ2 + c2 and  r2 = ρ2 + b2 − 2ρ bcos φ  
clearly hold.   From them we obtain 
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where 

 
Then the integral becomes 

 
We  integrate over the variable r first, with the result 

 
where r0 is the zero of the delta function argument, and 
solves the equation g(r) = t − R/a0.  g'(r0) is the slope of the 
delta function argument at this zero crossing, and behaves 
as a scale factor. (One recalls that the integral of δ(kx)dx is 
1/k.)  The H functions are Heaviside unit step functions, 
where H(x) is 1 for x > 0 and zero for x < 0, and arise from 
integrating a delta function over a finite interval.   a is the 
limit of  r at which the source motion ends. 
Certain properties of this integral can immediately be 
deduced, and are also presumed to hold for any f(r) and 
g(r).  First, if the delta function argument has more than one 
zero, then a separate integral exists for each zero, and each 
such integral contributes to the overall response I at the 
field point.  Second, and by definition, r0 is necessarily a 
function of R and t, and thus gives I its time-varying 
character.  Third, for fixed value of t, the above integral can 
be evaluated to give the value of I at that time t.  In this 
evaluation, the Heaviside function difference defines the 
range in R over which the integrand does not vanish, and 
therefore augments the integration limits.  In a similar 
consideration, physically meaningful parts of the integral 
exist only for those values of R that give the function Q in 
the radical a positive value, and so the zeros of Q augment 
the integration limits as well.  Thus, we have the crucial 
circumstance that each such limit of integration is also a 
function of time.  This aspect will become quite apparent in 
all the examples we discuss. 

3 Expanding Impulse Ring 

We consider an impulsive ring of constant amplitude which 
uniformly expands from a given point with radial velocity 
vs and stops when it reaches a radius r = a.  Then f(r) = 1 
and g(r) = r/vs, and the delta function argument is zero 
when r/vs = t − R/a0. Thus, the zero of the argument is r0 = 
vst − βR.  For notational convenience, we have defined a 
"source Mach number" as β = vs /a0, which is the ratio of 
the source ring expansion constant velocity to the speed of 
sound in the air. 
The integration interval is defined partly by the Heaviside 
function difference in the integrand, and partly by the 
requirement that the radical in the integrand be real.  For 
this expanding ring case, the function in the radical is 

 

This expression factors conveniently into a product of four 
linear terms, that is, 

 
where the four roots Ri are given by 

 
and where each root has a different pairing of the + and − 
signs applied to the radical and the constant b.  Then 

 
It is clear that for any given field point location (i.e., for 
fixed b and c), each root Ri is a function of t, and a plot of 
slant range R versus time t showing all four roots proves to 
be highly instructive and useful.  A representative such plot 
is shown in Figure 2 for fixed values of a, b, and c, for a 
supersonic source where β  > 1. 

 
Figure 2.  Root loci hyperbolas, their asymptotes, and Heaviside 
argument zero straight lines plotted as distance R of source point 
to field point versus time t, for a given fixed value of a, b and c.  
The labeled features are explained in the text. 

  We chose a > b, so that the observation point lies directly 
above part of the source region  r < a.  The root loci Ri(t) 
form upper branches of two intersecting hyperbolas in the 
R− t plane. These are given by the following two equations 
(one for each value of the sign of  b): 

The zeros of the Heaviside functions (at r0 = 0 and r0 = a) 
are also functions of time, and each plots as the straight 
lines shown in the Figure.   
The shaded region in the figure  (bounded by the Heaviside 
zero lines and the quartic root loci) defines the domain of R 
and t in which the Rayleigh integral  integrand  is real and 
exists.   The maximum and minimum values of R at each t 
in this domain thus provide the required integration limits 
for the evaluation. 
The boundary of this shaded region also contains informa-
tion explaining some features of the resulting pulse.  The 
pulse starts at time tF = (b + c√(β2 − 1))/vs corresponding to 
the Fermat path of minimum travel time for any acoustic 
information to reach the field  point; and the corresponding 
slant distance is RF =  βc√(β2 − 1).  The onset of source 
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motion (t = 0) reaches the field point at tA = RA /a0 where 
the slant distance is RA = √(b2+c2)/a0.  The points and time 
marks labeled by i and f identify signals reaching the field  
point from the near and far edges of the motion limit circle 
r0 = a; and the corresponding slant distances and times are      
Ri,f = √(c2 + (b ± a)2) and ti,f = a/vs + Ri,f /a0.  For this 
configuration (where b < a) the time of the minimum of R 
at c is tC = b/vs + c/a0. 
To round out this discussion, we observe that for any point 
within the source region  r < a, the time of signal reception 
from that point is t = r/vs + R/a0, while the extremes in slant 
range R for this circle are R2 = c2 + (b ± r)2.  On combining 
these two expressions by eliminating r, we recover the 
condition Q(r0,R) = 0.  We thus see that two of the four 
roots of this quartic equation correspond to these extremum 
paths during the source time interval. 

4 Integration Methods and Pulse 
Synthesis 

The Rayleigh integral for the expanding ring is clearly an 
elliptic integral.  We have chosen to evaluate it by efficient  
Gaussian quadrature techniques which seem appropriate to 
this task.  For the specific situation represented by Figure 2 
three distinct integration ranges are evident, corresponding 
to the time intervals tF to tA, tA to ti, and ti to tf. 
In the first time interval [tF, tA], the integration range is R4 
to R2 and each limit is a root (i.e., a zero) of the integrand 
denominator. Gauss-Chebychev quadrature [13] appears to 
be well-suited for calculating the Rayleigh integral between 
these singularity  limits when the integrand is recast in the 
form  h(R)/√(− (R −  R4)(R −  R2)).   Then the integral is 
evaluated by the following sum over N points: 

 
In the second time interval [tA, ti], the integration range is R4 
to R3, and Gauss-Chebychev quadrature also applies, with 
R3 replacing R2. 
In the third time interval [ti, tf], the integration range is from 
R on the radial limit line r0 = a to the root R3, and only at R3 
is the limit a singularity.  The distance R at the limit line is 
R0 = (vst − a)/β, and so the integration interval is R0 to R3.  
The integrand is then recast in the form p(R)/√(R3 − R), and  
modified Gauss-Legendre quadrature [14] easily evaluates 
it as the following sum over N points: 

 
In this expression, wk is the Gauss-Legendre weight factor, 
and ξk = R3 − (R3 − R0)ζk

2, where ζk is the kth positive zero 
of  the Legendre polynomial P2N(ζ). 

In all three cases, N = 8 provides ample accuracy, and the 
corresponding algorithms can be extremely efficient. 

In Figure 3 we plot a representative pulse (as a function of 
time) corresponding to the root loci shown in figure 2 that 
results from carrying out the indicated quadratures for the 
indicated time intervals.  The initial "Fermat jump" at tF, 
and "edge falloff" profile between ti  and  tf  are clearly 

evident.  An interesting feature of this pulse is the apparent 
dip in the initial plateau at the time  tC  corresponding to the 
minimum R at R = c. When β becomes infinite (thus 
modeling the well-known impulsively accelerated disc [3]) 
this "dented" plateau becomes flat. 

 
Figure 3.  Representative pulsed waveform corresponding to the 
quartic root and Heaviside function argument arrangement shown 
in  Figure 2. 

5 Pulse "Snapshots" 

We have used these integration evaluations at a sufficiently 
large number of pairs of values of b and c to calculate   
"snapshots" of the acoustic pulse field emerging upward 
from a supersonically expanding pulsed ring in a baffle 
plane.  Figure 4 shows this as a sequence of plots of 
contours of acoustic pressure, starting with the first 
"snapshot" in the bottom plot.  

 
Figure 4.  Two-dimensional plots of isobars in a pulsed waveform 
launched by a horizontally  expanding supersonic ring source as 
viewed from the side, shown at equal time increments, starting at 
the bottom.  Contour, horizontal (r) and vertical (z) scales are the 
same in each plot, but are otherwise arbitrary. 
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In these snapshot plots, the ring source expansion velocity 
is 3 times the speed of sound in air (β = 3), and the impulse 
source region in the  z = 0 plane extends from r = −7 to r = 
+7.  Thus, the source limit is a = 7.  The first plot at the 
bottom shows the source expanded to r = 6. The time it 
took the source to reach this radius is also the time 
increment between the subsequent ascending pulse plots 
above it.  The double semicircle feature (actually, the trace 
of a half torus in section) over the source stop points r  = 7  
and r = −7 that are apparent in the second and  later snap-
shots, represents the acoustic "break" signal originally 
generated when the source stopped at its radial limit. 

6 Conclusions and a Look Forward 

We have shown, using simple algebraic manipulations, how 
a Rayleigh integral having an expanding delta function 
surface motion source can be used to predict realistically 
appearing wavefront and waveforms launched from the 
moving surface into the air into all regions, from right at the 
source surface to further on out. We also demonstrated how 
an expanding acceleration impulse moving supersonically 
across the source plane can produce -- as the contour plots 
in Figure 4 indicate -- a rising acoustic pancake "bow 
wave" caused by this motion. 
We have found that numerically accurate evaluations of the 
Rayleigh integral are obtained rapidly and expeditiously 
with just 8-point Gaussian quadrature techniques; as the 
smoothness of the contour plots shown in Figure 4 attests.  
One may then contemplate fruitfully using such techniques 
in larger scale propagating pulse simulations from more 
complex delta function sources. 
Carrying these notions toward future work, we observe that 
when a deeply buried explosive is detonated, a more-or-less 
spherically expanding underground blast wave produces an 
expanding, impulsive acceleration ring at the ground 
surface above it right after the blast wave arrives at this 
boundary. The author believes that a good part of the 
ascending aeroacoustic waveforms that were measured by 
Banister and Hereford [8] can be adequately accounted for 
by modeling these measured ground surface accelerations 
as delta functions with appropriate kinematic arguments. 
In the accompanying poster session we will present 
preliminary kinematic calculations for a rising acoustic 
waveform caused by a surface delta function impulse ring 
that follows the surface trace of a spherically expanding 
underground blast wave. For this case the delta function 
argument contains g(r) =  √(r2 + z2)/vs where vs is now the 
speed of expansion of the blast wave, and z is the depth at 
which the explosion is located.  The quartic root loci now 
have an aspect that is not as purely hyperbolic as are the 
ones shown in Figure 2.  The techniques for calculating the 
rising acoustic field are otherwise almost identical to the 
procedures presented here. 
Finally, our calculational procedures can be applied with 
almost no change to the case of a contracting ring source, 
that is, where the delta function ring in the planar baffle  
starts at r = a and converges uniformly to r = 0.  These 
developments will also be presented in the poster session. 
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