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Ultrasonic guided waves, because of their long range inspection ability, are now being used more and
more as a very efficient and economical NDE method for large area inspection. This paper proposes
an eigenvalue imaging method which has an ability to classify the Lamb wave fronts scattered by sub-
surface defects and to localize the defects. The eigenvalues are derived from the covariance matrix
defined over the 4-dimensional vector space which is spanned by following components: (1)a vertical
(z-directional) displacement, (2)its vertical particle velocity, (3)the orthogonal pair of out
of strains. Therefore,　 the third eigenvalue detects the existence of the defects and the fourth one
shows location of the defects beneath the surface of the plate.

1 Introduction

Lamb-waves play important roles in NDT(Non-Destructive
Testing) fields. Being placed on the surface of a homo-
geneous isotropic plate, a sound source excites several
kinds of waves: (a) pressure and shear waves propagat-
ing in the medium, (b) a Rayleigh wave that is confined
to the surface of the medium, and (c) symmetric and
anti-symmetric Lamb-waves traveling along the plate.
The first two waves are utilized for traditional ultrasonic
techniques such as pulse-echo methods[1]. In contrast
to these classical techniques, in which the wavelength is
shorter than the plate thickness, the Lamb-wave has the
advantage of propagating over large area, thus inspect-
ing the entire specimen, including inaccessible portion
of the objects. The variation of the Lamb-wave veloc-
ity, however, causes difficulties for interpretation of ob-
served signals. It is important, therefore, to establish
the crack detection criterion independent of local wave
numbers. The third-largest eigenvalue of the covariance
matrix is defined over the 4-dimensional vector space
which is spanned by following components: (1)a vertical
(z-directional) displacement, (2)its vertical particle ve-
locity, (3)x-directional and (4)y-directional out-of-plane
strains. Focusing the rank of the covariance matrix, we
can find following facts in the far field: (1)rank=2: when
no-defect exists over the Lamb wave field, or even when
defects exist only on the line colinearly with a pair of
acoustic transmitter and receiver, (2)rank=3: in other
cases, and in the near field of the defects (3) rank≥ 3. In
this study, the computational process in the defect de-
tection based on the spatio-temporal gradient analysis is
discussed and the physical meanings of the eigenvalues
are investigated through several numerical experiments.

2 Problem Formulation

2.1 Spatio-Temporal Gradient Descrip-
tion

The vertical displacement of the Lamb-wave field satis-
fies the wave equation,

∂2

∂t2
ψ(r, t)− v2Δψ(r, t) = 0, (1)

where r = (x y )T , and v are a 2-dimensional coordi-
nates of the observation point and a phase velocity of
the A0mode Lamb wave respectively. A diverging cylin-
drical wave which is a solution of the wave equation can
be denoted as:

ψ(r, t) =
i

4
H

[1]
0 (

ω0‖r‖
v0

)e−iω0t, (2)

of which temporal and spacial gradients can be denoted
as follows respectively:

∂

∂t
ψ(r, t) =

1
4
ω0H

[1]
0 (

ω0‖r‖
v0

)e−iω0t (3)

∇ψ(x, y, t) = − i
4
ω0

v0
H

[1]
1 (

ω0‖r‖
v0

)e−iω0t

·
( x
‖r‖

y
‖r‖

)
. (4)

Therefore, ψ(x, y, t) satisfies asymptotically the follow-
ing spatio-temporal differential equation:

∇ψ(r, t) =
(
−1
v
ψ̇(r, t)− 1

2‖r‖ψ(r, t)
)

r

‖r‖ ,
(5)

where the vertical component of the particle velocity can
be obtained by differentiating ψ(x, y, t) for time as:

ψ̇(r, t) =
∂

∂t
ψ(r, t). (6)

Thus, it is clear from the above equation (5), that the or-
thogonal pair of out-of-plane strains, (4) are linearly de-
pendent on the corresponding vertical displacement, (3),
and vertical-particle velocities, (6), when unique cylin-
drical wave exists on the plate.

2.2 Spatio-Temporal Gradient Analysis

Reducing the disturbance caused by the noise and fluc-
tuation of signal intensity, the covariance matrix of the
spatio-temporal gradient vector is adopted. The four
dimensional spatio-temporal gradient vector is defined
as follows:

f =

⎛
⎜⎝
fx(r, t)
fy(r, t)
ft(r, t)
f(r, t)

⎞
⎟⎠ . (7)

, where fx(r, t), fy(r, t), ft(r, t), and f(r, t) are the spa-
tial gradients of f(r, t) in the x, and y directions, the
vertical components of particle velocity and the vertical
displacement respectively The covariance matrix is de-
rived by the correlation among the each components of
f as:

Φ = lim
T→∞

1
T

∫ T

0

ff†dt

=

⎛
⎜⎝
φxx φxy φxt φx

φ∗xy φyy φyt φy

φ∗xt φ∗ty φtt φt

φ∗x φ∗y φ∗t φ

⎞
⎟⎠ . (8)
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Here, ∗ and † denote the complex conjugate and Her-
mitian conjugate respectively. T means the integral
duration. (The numerical experiments after mentioned
utilizes the exponential decay function with 20μs time
constant instead of the integral duration.)

Based on the linear dependency among the three
components, ∇ψ(r, t), ψ̇(r, t), and ψ(r, t), the rank of
Φ is degenerated to 2, when unique cylindrical wave ex-
ists on the perfect or defect-free plate. In general case, a
vertical displacement, ψ(r, t), and its time differential,
ψ̇(r, t) has no correlation.

2.3 An Overlap of Incident and Reflected
Wave Fronts

For simplicity, a reflected cylindrical wave of which source
is located at rs is assumed. Consequently, observed sig-
nals at r can be denoted by the sum of two cylindrical
waves as follows:

f(r, t) = ψ(r, t) +Arψ(r − rs, t−Ds) (9)

Here, Ar andDs are the amplitude of the reflected plane
wave and the propagation delay time at rs respectively.
When the following relations,

r

‖r‖ =
(

cos θ
sin θ

)
, (10)

and
r − rs

‖r − rs‖ =
(

cos θs

sin θs

)
, (11)

are given, fx(r, t), fy(r, t) can be denoted as:

fx(r, t) =
(
−1
c
ψ̇(r, t)− 1

2‖r‖ψ(r, t)
)

cos θ

+ Ar

(
1
c
ψ̇(r − rs, t−Ds)

− 1
2‖r − rs‖ψ(r − rs, t−Ds)

)

· cos θs, (12)

fy(r, t) =
(
−1
c
ψ̇(r, t)− 1

2‖r‖ψ(r, t)
)

sin θ

+ Ar

(
−1
c
ψ̇(r − rs, t−Ds)

− 1
2‖r − rs‖ψ(r − rs, t−Ds)

)

· sin θs. (13)

On the basis of the above equations, each component
of Φ is defined as:

φ = lim
T→∞

1
T

∫ T

0

f(r, t)f∗(r, t)dt

= (1 +A2
r)φψψ , (14)

φtt = lim
T→∞

1
T

∫ T

0

∂

∂t
f(r, t)

∂

∂t
f∗(r, t)dt

= (1 +A2
r)φψ̇ψ̇, (15)

φxx = lim
T→∞

1
T

∫ T

0

∂

∂x
f(r, t)

∂

∂x
f∗(r, t)dt

=
1
c2

(cos2 θ +A2
r cos2 θs)φψ̇ψ̇

+
(

cos2 θ
4‖r‖2 + A2

r

cos2 θs

4‖r − rs‖2
)
φψψ,

(16)

φyy = lim
T→∞

1
T

∫ T

0

∂

∂y
f(r, t)

∂

∂y
f∗(r, t)dt

=
1
c2

(sin2 θ +A2
r sin2 θs)φψ̇ψ̇

+
(

sin2 θ

4‖r‖2 +A2
r

sin2 θs

4‖r − rs‖2
)
φψψ, (17)

φt = lim
T→∞

1
T

∫ T

0

∂

∂t
f(r, t)f∗(r, t)dt

= 0, (18)

φx = lim
T→∞

1
T

∫ T

0

∂

∂x
f(r, t)f∗(r, t)dt

=
(

cos θ
2‖r‖ +A2

r

cos θs

2‖r − rs‖
)
φψψ , (19)

φy = lim
T→∞

1
T

∫ T

0

∂

∂y
f(r, t)f∗(r, t)dt

=
(

sin θ
2‖r‖ +A2

r

sin θs

2‖r − rs‖
)
φψψ , (20)

φxt = lim
T→∞

1
T

∫ T

0

∂

∂x
f(r, t)

∂

∂t
f∗(r, t)dt

=
1
c
(cos θ +A2

r cos θs)φψ̇ψ̇,

(21)

φyt = lim
T→∞

1
T

∫ T

0

∂

∂y
f(r, t)

∂

∂t
f∗(r, t)dt

=
1
c
(sin θ +A2

r sin θs)φψ̇ψ̇,

(22)

φxy = lim
T→∞

1
T

∫ T

0

∂

∂x
f(r, t)

∂

∂y
f∗(r, t)dt

=
1
c2

(cos θ sin θ +A2
r cos θs sin θs)φψ̇ψ̇

+
(

cos θ sin θ
4‖r‖2 +A2

r

cos θs sin θS

4‖r − rs‖2
)
φψψ .

(23)

Consequently, in the far field,

2π‖r‖
λ

� 1 and
2π‖r − rs‖

λ
� 1, (24)

we can summarize the relation between the rank of
Φ and reflected cylindrical waves as follows:
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Figure 1: Geometry of scatterers(S1,2,..) and a pair of
sound source(O) and measurement point(P): (1)no

scatterer; the reflected wave fronts are observed in the
far-field of the scatterers (2) which exist in the with the
pair colinearly, (3) otherwise; the reflected wave fronts
are observed in the near-field of one scatterer (4)which

exists in the with the pair colinearly, (5) otherwise.

• case No.1: no reflected wave exists,

– Rank(Φ) = 2 over the Lamb-wave field;

• case No.2: both an incident wave and its reflected
one propagate in the same direction,

– Rank(Φ) = 2, in the far-field of the scatter-
ers;

• case No.3: an incident wave and its reflected one
propagate in the diff rent direction,

– Rank(Φ) = 3, in the far-field of the scatter-
ers.

However, in the near field of the scatterers,

2π‖r − rs‖
λ

≤ 1, (25)

• case No.4: both an incident wave and its reflected
one propagate in the same direction,

– Rank(Φ) = 3;

• case No.5: an incident wave and its reflected one
propagating in the different direction,

– the rank of Φ increases to 4.

3 Numerical Experiments

3.1 FDTD Discrete Model

The finite-difference time-domain (FDTD) method was
first introduced for the study of electromagnetic scatter-
ing problems [2]. In acoustics, the FDTD method has
been developed to study a wide variety of problems[3].

Table 1: Parameters of simulated objects
density ρ 7.8[103kg/m3]
Young’s modulus E 206[GPa]
Poisson ratio σ 0.25
Geometry width 64[mm]

length 64[mm]
height 2[mm]

Sampling interval Δx 0.25mm
Δy 0.25mm
Δz 0.25mm
Δt 1.0ns

(1)

64.0mm

64.0mm

source node
pit

x

y

Φ=1.0mm

16mm

8mm

(2)

x

z

1.0mm stress free boundary

0.75mm

Figure 2: (1) Specimen with a defect, (2) geometry of
the pit and stress-free boundary conditions.

FDTD-method solves the acoustical wave field in the
solid, by employing finite differential equations to ap-
proximate the derivatives and offsetting the stress and
the particle evaluation points, both temporally and spatially.[4,
5]. Consider a three-dimensional computational domain,
in which the tapping source is a velocity node at the
center of the object surface. The all surfaces of the ob-
ject satisfy the stress-free conditions respectively for all
except the source node. The each value of the stress
and particle velocity is initialized to be zero except the
source node. In the numerical experiments, the mate-
rial is considered to be carbon steel (S45C) as shown in
Table 1.

3.2 Eigenvalue imaging around the Sub-
surface Defect

Numerical experiments are conducted to assess the per-
formance of the proposed eigenvalue imaging. A sub-
surface point-like defect considered in this study is illus-
trated in Fig.2 (1) and stress free boundary conditions
adjacent to the defect are introduced into the FDTD
simulation as shown in (2). The snapshots of the vertical
particle velocity and the corresponding the third eigen-
value imaging are shown in Fig.3(1), (2)respectively.
The comparison between the corresponding pair of fig-
ures clarifies the proposed index detecting defects. The
bright areas in the third eigenvalue arise from the over-
laps of the incident wave and the reflected wave by
the subsurface pit. As a consequence of the fact, the
inhomogeneity-index can detect the existence of the sub-
surface defect.
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(1)

1.0

0.0

-1.0
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λ3/λ4
+0dB

-20dB

-40dB

Figure 3: (1) Normalized vertical particle velocity, (2)
the third eigenvalue , at time=17μs after irradiation

(1)
source node

16mm

1mm

pits
  =1.0mm

(2)

source node
16mm

3mm

x

pits
  =1.0mm

Figure 4: The fourth largest eigenvalue images of two
pits, of which the gap is increasing with:(1) 1mm, (2)

3mm.

3.3 Resolution limit of the Eigenvalue
Imaging

The near field of the point like scatterer increases the
rank of the covariance matrix to 4. Being scanned all
over the surface of the plate, it can be defined the loca-
tion of the point like defects out of the clean surface.

Numerical experiments are conducted to assess the
resolution limit of the proposed eigenvalue imaging. All
subsurface point-like defects considered in this study are
same illustrated in Fig.2 (2). The gap of two scatterers
are increasing with Fig.4 (1):1.0mm, (2)3.0mm Each fig-
ure shows the snapshots the fourth eigenvalue images.
As a consequence of the figures, the resolution limit is
considered to be 1.0mm which is shorter than the wave-
length of the A0-mode Lamb-wave in the considered
cases.

4 Acoustic Experiments

We have implemented and tested the proposed inhomogeneity-
index with the Proof-Of-Concept (POC) model.

4.1 Proof-Of-Concept Model

Figure 5(1) shows the external view of the 4-ch probe
which has four rectangular ceramic transducers, all of
which have dimensions in length(4mm)× width(1mm)×
height(0.3mm) (cf.Fig.5(2)). Fig.6 shows the block di-
agram of the POC-model. Single transmitter which is
located at the center of the edge irradiates the spec-
imen with 500kHz-mono-cycle pulse. Each receiving
transducer detects the vertical displacement at the ad-
jacent four points as, f1(x, y, t), f2(x, y, t), f3(x, y, t),
and f4(x, y, t). An open defect is pitted at the point P0

(shown in Fig.6) on the bottom surface of the specimen.

4.2 Spatio-Temporal Gradient Analysis

The four signals, (1)a vertical (z-directional) displace-
ment, (2)its vertical particle velocity, (3)x-directional

M16

Φ=2.0mm

40.0mm

3

2
1

4

PZT-acoustic transducers

side view

bottom view

(a)

(b)

Figure 5: (1)A view of the probe and (2)its schematic
drawings

and (4)y-directional out-of-plane strains, are obtained
as follows:

f(x, y, t) =
1
4

4∑
i=1

fi(x, y, t) (26)

ft(x, y, t) =
f(x, y, t)− f(x, y, t−Δt)

Δt
(27)

fx(x, y, t) =
f1(x, y, t)− f3(x, y, t)

Δx
(28)

fy(x, y, t) =
f2(x, y, t)− f4(x, y, t)

Δy
. (29)

Here, Δt, Δx, and Δy are the sampling interval time
(=10ns), x and y directional the sampling interval (=2.0mm)
respectively. φxx is derived from the following summa-
tion of the decaying series:

φxx =
1

NΔt

N∑
n=0

αn · fx(x, y, (N − n)Δt)

· fx(x, y, (N − n)Δt)Δt, (30)

where α satisfies the time constant τ = 20μs as:

α = e−Δt/τ = 0.9995. (31)

The time-constant, τ , should be much longer than the
period, 2μs, of the incident wave, because the integral
duration is controlled by τ . Other components of the co-
variance matrix are obtained in same manner. Based on
these results, the third and fourth eigenvalues have an
ability to reconstruct the scattered wave front over the
surface with lower computing cost what is required by
the eigenvalue analysis. Fig.7 shows the reconstructed
images obtained by the third eigenvalue at each snap-
shot and the corresponding near-field images obtained
by the fourth eigenvalue of the subsurface pit.

5 Concluding Remarks

This paper proposes the eigenvalue imaging method to
be independent of frequency and phase velocity and
to characterize the wave field where incident and scat-
tered waves overlap each other. For detecting the de-
fects, spatio-temporal gradient analysis based on the
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P5:x=5.0mm, y=5.0mm

PT

O

P1 P5

P2

P3
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Figure 6: Block diagram of the proof of concept model
and its geometrical relationship with a specimen for

inspection.

linear dependency among the vertical displacement, the
vertical particle velocity, and a pair of shear strains is
used. By analyzing the covariance matrix of the spatio-
temporal gradient vector, it is found that the proposed
inhomogeneity-index becomes zero only when the sur-
face is perfect, without defect or any fault. The numer-
ical experimental results through FDTD method were
conducted with following conclusions and remarks:

1. Eigenvalue Imaging based on the spatio-temporal
gradient analysis is proposed as a novel NDE method.

2. The third eigenvalue detects a wave scattered by
defects.

3. The fourth eigenvalue has an ability to localize
defects.
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