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Many spaces have curved walls or ceilings. With improved building technology and new fashions in architecture 
(blobs) there is an increasing number of problems due to the acoustic reflections by these surfaces. Sound 
reflected by concave surfaces will concentrate in a narrow area. 
In practical applications of room acoustics these curved surfaces will be calculated with mirror imaging or ray 
tracing programs, in which the structure is modeled by flat segments. Alternative is a geometrical approach. Both 
methods do not correspond to reality. 
The only valid calculation method is the calculation from a wave extrapolation method. It is shown that a 
theoretical correct solution of the sound field by curved surfaces is possible. A fairly simple expression for the 
sound pressure in the focal point is found and a more complicated description of the reflected sound field by 
small curved surfaces is presented. With these results the sound field in field applications can be calculated. 

 Wigmore Hall London Royal Albert Hall London Tonhalle Düsseldorf(before renovation)

Figure 1. Some examples of concert halls with curved surfaces. 

1 Introduction 

Many small or large rooms have concave surfaces. With 
improved building technology and fashions in architecture 
(blobs) problems due to these surfaces are encountered 
more and more. Some situations are described in literature 
[1,2,3]. In our consultancy work we had to deal with these 
situations e.g. in concert halls (figure 1 and [4,5]). 

When sound is reflected from a concave surfaces the 
geometry of the surface will force the energy to 
concentrate. Figure 2 shows the impuls response (energy-
time-curve ETC) of the Tonhalle Düsseldorf , before 
renovation. We see that a very significant echo occurs.  

Figure 2. example of the impulse response in Tonhalle 
Düsseldorf  (before renovation). 

The sound pressure due to this focussing if mostly 
calculated by computer simulation techniques applied on a 
segmented shape or by a geometrical approximation. Both 
methods however fail in the focussing point, the result is 
not even close to the real value. In the geometrical 
approach the pressure will go to infinity. 

When using segmented shapes and image sources the 
calculated pressure in the focal point depends on the 
segmentation in the model. (see figure 3).  

This rises the (first) question what sound pressure to 
expect in the focal point. In a number of consultancy 
projects, such as the two shown in figure 2, it was found 
very difficult to sufficiently reduce the echo’s found. So 
this rises the second question we will try to answer in this 
paper, why it is that these echo’s are so persistent and to 
what level the can be reduced. Not only the pressure in the 
focal point is important. As a third item we will derive a 
more general approximation of the sound field from 
curved surfaces. 

To answer the first question, to be able to correctly 
estimate the sound pressure in the focal point, a wave 
extrapolation method is used, that will be presented here.

Real situation             3 segments                  5 segments 

Fig.3 Illustration of the different distribution of 
pressure when using image sources, depending on the 

segmentation of the curved surface.
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2 Wave extrapolation 

Wave extrapolation uses the Huygens principle, developed 
by Christiaan Huygens in 1678 and later improved by 
Fresnal. The Huygens Principle states that every point on 
the primary wavefront can be thought of as an emitter of 
secondary wavelets. The secondary wavelets combine to 
produce a new wavefront in the direction of propagation. 
Fresnel extended the theory of Huygens in stating that the 
secondary wavelets mutually interfere. But it was 
Kirchhoff who put the Huygens-Fresnel principle on a 
sounder mathematical basis.  
From Green’s theorem the Kirchhoff integral can be 
derived: 
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It states that, with a sound source outside volume V, the 
sound pressure at point A inside V can be calculated from 
the sound pressure and particle velocity data on the surface 
S that is the boundary of V. 
In the integral above the sound pressure and particle 
velocity is assumed to be known and resulting from a 
source at distance r from the surface element dS. 

The distance between dS and A is given by D. The angles 
and  are the angles between the incident sound and the 
(outer)normal to dS and between the (inner)normal to dS
and the vector to A from dS respectively. 

For λ>>r  and λ>>d  (far field) this can be simplified: 
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This is known as the Fresnel-Kirchhoff diffraction 
formula. In case of wave propagation from a flat surface 
the Kirchhoff integral may be further simplified to the 
Rayleigh integral, either using the sound pressure data or 
the particle velocity data. Since we will calculate the 

reflection by extrapolating the wavelets on concave 
surfaces we will use the Kirchhoff integral. This is done by 
first calculating the wavefield from the source on the 
concave surface and then (without the source and with the 
velocity at opposite phase) integrating the contributions of 
the wavelets over the concave surface, thus obtaining 
(only) the reflected sound. 

3 Reflection in the focal point from a 
sphere 

We take a full sphere with radius R and describe it with the 

spherical coordinates ( )θφ,,r  and the surface elements 

θ⋅φ⋅φ⋅= ddsinRdS 2 .  

If the sound source is in the origin, the sound pressure at 
the sphere’s surface will be: 
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Integrating over the sphere will give the following 
(Kirchhoff) integral expression for the pressure in a point 
A inside the sphere: 
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The amplitude of the reflecting wave in the centre of the 

sphere is: 
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This amplitude corresponds roughly with the amplitude 
one would get if the reflected energy is distributed over an 

circular area with radius λ
4
1 .  

Since all contributions of dS are in phase, this amplitude is 
proportional to the reflecting surface that contributes. For a 
hemisphere the amplitude in the center will be:  

p̂kPA = , or 22
2
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D 

Fi

Fig.4 Symbols used for the Kirchhoff integral 
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Figure 5. co-ordinates used for the sphere 

(4) 

φm

πφ 8
1=m

φm

πφ 2
1=m

Figure 6. reflected sound pressure from a dome segment; R=10m, k=10 (f=500Hz); black=0, white 1≥ . 
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For a sphere fragment integrating φ  from 0 to mφ this will 

result in: 
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In figure 6 two examples of the calculated pressure is 

given for different mφ . 

4 Reflection in the focal line from a 
cylinder 

The reflected sound field from a cylinder can, as for the 
dome, be described by the Kirchhoff integral. 

The positions within the cylinder are described by 

cylindrical co-ordinates )z,,r( θ and the surface elements 

on the cylinder have dimension dzRddS θ= . The source is 

assumed in the center (0,0,0). 

We will define: 22
s zRr +=  and R= radius of the 

cylinder. For point A the distance to the radiating element 
dS will be D. The Kirchhoff integral will then be: 
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or assuming source and receiver in the far field 

)D,r( s λ>>λ>> : 
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For A=(0,0,0) this can be simplified, by using srD = and 

D

R
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for half a cylinder this will result in: 
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Figure 8 shows the increase in sound pressure level of a 
hemisphere and a half-cylinder. It shows that especially for 
the hemisphere very high SPL’s are possible, especially at 
high frequencies.  In practical situations however the 
reflection is better audible at lower frequencies, firstly 
because the diffusion due to surface irregularities is more 
at high frequencies and secondly because the focal area is 
larger at low frequencies. Since even very good diffusers 
still have some energy specularly reflected [7], it will be 
difficult to suppress the reflection more than 10 dB [8].  
This answers the second question put in the introduction, 
since it means that even with very good diffusion the 
increase of the SPL in the focal point will still be 
significant. 

In figure 8 we also see that the increase of sound pressure 
level in a cylinder shape is much less than in a dome 
shape. Although the SPL can be significant, it seems 
feasible to reduce the reflection in the focal point to a 
reasonable level by diffusion (a further reduction of the 
level by 10 dB max.). 
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Figure 7. co-ordinates used for the cylinder 
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Figure 8. Increase in sound pressure level LΔ in the focal point, relative to the SPL at 1 m distance from the source, 
for a hemisphere and a half cylinder for different radii (in m). 
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5 Experimental verification of the 
amplification in the focal point 

To verify the theoretical amplification in the focal point 
(6) an experimental setup at small scale was made. It 
consists of an half ellipsoid with the two focal points at 
relatively small distance. The model is CAD/CAM milled 
from a solid polyurethane block ( Ebaboard PW 920), a 
material with a high density and excellent low surface 
porosity. The accuracy of the shape of the ellipsoid is 
approx. 0.01 mm. 

The impulse response was measured with a MLS 
(Maximum Length Sequence) signal. In time domain the 
separation of direct signal and (single) reflected signal was 
made. The setup and frequency dependant difference 
between reflected and direct sound pressure level are 
shown in figure 9. The results show a very good agreement 
with the theory. 

6 Reflected sound field from a 
curved surface 

Now we will concentrate on a rectangular surface that is 
curved in two directions (curvature defined by the radii  

yR and zR ), see figure 10:  

In case the source A and the receiver point B are situated 
sufficiently far from the reflection object  ( λ> S2b,a oo ),  

then the amplitude function can be assumed independent 
from dS: 

0aa ≈ ,
0coscos αα ≈ , 

0bb ≈ , 
0coscos ββ ≈

The Kirchhoff integral can be written as: 
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For the phase function a more accurate description of the 
distance to dS is necessary. From the Taylor series the 

curvature xΔ can be estimated: 
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This solution resembles the solution of the Fraunhofer 
diffraction [9], with the exemption of the quadratic terms 
due to the curvature. From  (15) the phase function can be 
obtained: 
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This phase function can be split up into y- and z-direction. 
The resulting integral can be solved [10]: 
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Figure 9. Experimental setup (left) and measurement result (right) 

Section of the experimental setup (half ellipsoid), 
S=source, R=microphone

Difference between SPL reflected and direct sound, 
red: theory (7) and blue: measured
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Figure 10: Co-ordinates and symbols used for the 
calculation of the reflected sound field form curved 
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The errorfunction:  

( )( )xjerfz ⋅+= )1 , Real 

(red) and Imaginary part 
(blue). x is a real number.

The difference of two error 
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Figure 11. The complex error function (left) and the 
difference between to shifted error functions (right) 

The difference between two complex error functions is a 
function with a main lobe and side lobes, somewhat related 
to Bessel functions, see figure 11. 

Figure 12 shows the calculation result of this analytical 
solution (17) and a numerical solution based on (1)

Calculation with (17) Numerical solution with (1) 

Fig.12 Reflected sound field by a curved surface of 1x1 m, 
radius 10 m, source in centre point, k=9,2 (500 Hz).

With this analytical formulation both pressure and phase of 
the reflected sound field can be calculated with sufficient 
accuracy. 

7 Conclusions 

From the presented data we can conclude that: 

The (maximum) SPL in the focal point can easily 
predicted; for the sphere it is not dependent on the radius, 

for the cylinder it is. The focussing effect of the cylinder is 
much less then the sphere. 

Since all diffusing objects still reflect part of their energy 
specularly, the means of reducing focussing effects by 
diffusing objects are limited. Strong echo’s from 
hemispheres are likely to remain to some extent, even with 
good diffusion. Echo’s from cylinder shapes are easier to 
remove. 

The sound field at some distance from the source can be 
calculated by an extension of the Fraunhofer diffraction 
solution for curved surfaces. 
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