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In this paper, several multichannel modified filtered-x algorithms for active noise control systems using the 
dichotomous coordinate descent method (DCD) are introduced. This multiplier-less and division-less method 
is used for avoiding the matrix inversion that appears in adaptive algorithms such us recursive least square 
(RLS) based algorithms, affine projection (AP) or its fast versions. The study is focused on the important 
computational savings given by the use of DCD method, the effect on the convergence properties and stability 
of the investigated algorithms. A comparison of their convergence performance in case of using non-ideal 
noisy acoustic plants is also given. It is proved by simulations that the use of the dichotomous coordinate 
descent method can be an interesting option for reducing the computational cost of practical multichannel 
algorithms for ANC systems.  

1 Introduction 

Active noise control (ANC) systems are being increasingly 
researched and developed [1]. The delay compensated or 
modified filtered-x structure for active noise control 
systems using FIR adaptive filtering was introduced in [2], 
and it is presented in Fig. 1. The structure in Fig. 1 
eliminates the plant delay by computing an estimate of the 
primary field signals, which are unaffected by the changes 
of the adaptive FIR filter coefficients. 

 
Fig.1 A delay compensated or modified filtered-x structure 

for active noise control. 
 
For ANC using adaptive FIR filters, the multi-channel 
filtered-x least-mean-square (FX-LMS) algorithm [1], [2] is 
the most commonly used algorithm. The drawback of the 
FX-LMS algorithm is the slow convergence speed, 
especially for broadband multi-channel systems. Although 
it converges faster than the FX-LMS algorithm, the delay 
compensated or modified filtered-x LMS algorithm (MFX-
LMS) [2], [3] also suffers from the same slow convergence 
problem, especially for multi-channel systems. For ideal 
(not noisy) plant models, FAP algorithms typically may not 
provide the same convergence speed as recursive least-
squares (RLS) based algorithms [3], [4]. However, they 
demonstrate a much improved convergence speed 
compared to FX-LMS and MFX-LMS algorithms, without 
the high increase of the computational load or the numerical 
instability often found in RLS-based algorithms, especially 
for multichannel systems [3], [4]. 
It is well known that the stochastic gradient descent 
algorithms have poor convergence speed, while the 
recursive-least-squares algorithms are too complex and 
often numerically unstable (see, e.g. [3] and the references 
therein). An affine projection algorithm for multichannel 
active noise control called the Modified Filtered-X Affine 

Projection algorithm (MFX-AP) has been presented in [4]. 
This algorithm it is still too complex for practical 
applications. Therefore, simpler fast affine projection 
(FAP) algorithms suitable for active noise control and 
based on some approximations of the original affine 
projection algorithm has been proposed in [4], [5]. All these 
algorithms need at least one inverse matrix computation, 
which is very complex for large matrices and prone to 
numerical instability.  In [6] the dichotomous coordinate 
descent (DCD) algorithm has been proposed and in [7] has 
been used for solving the implicit linear system of the 
MFX-AP equations. The resulting efficient algorithm was 
called the modified filtered-x dichotomous coordinate 
descent affine projection (MFX-DCDAP) algorithm and is 
presented in Section 2.1.  
The RLS based algorithms have a faster convergence speed. 
A new algorithm called the multi-channel delay-
compensated Modified Filtered-X Dichotomous Coordinate 
Descent Approximated Exponential Recursive Least Square 
(MFX-DCDAERLS) is obtained in Section 2.2. Section 3 
presents simulation results of the DCD based algorithms 
and their original counterparts. A comparison of the 
numerical complexity of the proposed algorithm with the 
classical RLS algorithm is presented in Section 4. Section 5 
concludes this work. 

2 Dichotomous coordinate descent 
based algorithms for active noise 
control 

The DCD algorithm is based on binary representation of 
elements of the solution vector with bM  bits within an 
amplitude range [ ],  H H−  [6]. Another parameter of the 
DCD algorithm is uN , that represent the maximum number 
of “successful” iterations when a bit update happens. More 
details about the DCD algorithm can be found in [6] and 
[8]. If H is a power of two the DCD algorithm is 
implemented only with additions and bit shifts operations 
[6]. Thus, the DCD algorithm can be implemented without 
explicit multiplications and divisions. The peak complexity 
of the DCD algorithm for given bM  and uN , is 

( )2 u bN N M+  shift-accumulation (SACs) operations [6].  

2.1 The modified filtered-x dichotomous 
coordinate descent affine projection 
algorithm 

The notations used in this paper are taken from [7]. The 
variable n  refers to the discrete time,  I  is the number of 
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reference sensors,  J represents the number of actuators, 
 K  - number of error sensors,   L  is the length of the 

adaptive FIR filters,  M is the length of (fixed) FIR filters 
modeling the plant and  N  is the projection order. The 
vectors [ ]( ), , ( 1)  T

i i ix n x n L= − +x L and 

[ ]' ( ), , ( 1)  T
i i ix n x n M= − +x L  consist of the last L  and 

M  samples of the reference signal ( ) ix n , respectively. 

The vector ( ), , ( 1)  
T

j j jy n y n M⎡ ⎤= − +⎣ ⎦y L consists of the 

last  M samples of the actuator signal ( ) jy n . The samples 

of the filtered reference signal , , ( ) i j kv n are collected in the 

 IJ K× , and  IJL K× matrices 
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0 0( ) ( ) ( 1)  
TT Tn n n L⎡ ⎤= − +⎣ ⎦V V VL . The vectors 

ˆ ( )nd = 1 2  ˆ ˆ ˆ( ),  ( ),   ( )Kd n d n d n⎡ ⎤
⎢ ⎥⎣ ⎦

L  and ˆ( )ne = 

1 2  ˆ ˆ ˆ( ),  ( ),   ( )Ke n e n e n⎡ ⎤⎣ ⎦L  consist of estimates ˆ ( ) kd n  of 

the primary sound field ( ) kd n  and of alternative error 

signals samples ˆ ( ) ke n , both computed in delay-
compensated modified filtered-x structures. The vector 

, , ,1 , ,, ,  
T

j k j k j k Mh h⎡ ⎤= ⎣ ⎦h L  consists of taps , ,j k mh  of the 
(fixed) FIR filter modeling the plant between signals 

( ) jy n  and ( ) ke n . The 1 IJL×  vector 

( )nw =

, ,1,1,1 , ,1 1,1,( ) ... ( ) ( ) ( )
T

I J LI J Lw n w n w n w n⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
L L  

consists of the coefficients from all the adaptive FIR filters 
linking the signals ( )ix n  and ( )jy n . Finally, ( )ke n  is the 

k th error sensor signal, μ is a normalized convergence gain 
10 ≤≤ μ , KNI  is an identity matrix of size KN KN×  and 

δ  is a regularization factor that may be used to help with 
eventual numerical instability.  

1
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If we note by ( )KN nR the autocorrelation matrix (size 
KN KN× ) and by ( )nP we have 
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The weights are obtained by the following equation: 
( 1) ( ) ( ) ( )n n n nμ+ = −w w V P  (6) 

Therefore, the MFX-DCDAP is defined by the equations 
(1)-(6) [7]. Also, an example of a DCD based fast version 
of the pseudo affine projection algorithm, suitable for ANC 
systems can be found in [8]. 

2.2 The modified filtered-x dichotomous 
coordinate descent approximated 
exponential recursive least square 
algorithm 

In order to use the DCD algorithm in a least square 
algorithm, we use the formulation of the RLS problem in 
terms of a sequence of auxiliary normal equations with 
respect to increments of the filter weights. This approach 
was applied to the exponentially weighted case and a new 
structure of the RLS algorithm was derived [9]. An 
approximation in solving the auxiliary linear system of the 
transversal Exponential RLS (ERLS) algorithm is used. 
This algorithm is adapted to the multichannel case. To 
describe the multi-channel delay-compensated Modified 
Filtered-X Approximated Exponential Recursive Least 
Square algorithm more notations have to be defined:   

)(nR  (size IJL IJL× ) is initialized as an identity matrix 

multiplied by the  regularization factor δ .  We have 

( ) ( )( ) ( 1) Tn n n nλ= − +R R V V  (7) 

,where λ is a forgetting factor ( 0 1λ< < ) 

 ( )nw  is a  1×IJL  vector used in solving the auxiliary 
equations [9]. If we assume that the residual vector 
described in [9] is null each iteration, the DCD algorithm 
can be used to solve the following linear system: 

( ) ( )nnnn TeVwR ˆ)()( =  (8) 

The weights are given by the following equation 

( )nnn www −=+ )()1(  (9) 

Therefore, the MFX-DCDAERLS is defined by the 
equations (1)-(4) and (7)-(9). Also, other DCD based 
algorithms could be derived from known fast RLS 
algorithms (see, e.g. [3] and the references therein) and 
adapted for ANC systems. The DCD algorithm can replace 
some implicit linear systems encountered in fast RLS 
algorithm’s equations.  

3 Simulations 

The DCD based algorithms (MFX-DCDAERLS and MFX-
DCDAP) were simulated and compared to the previously 
published multi-channel modified filtered-x affine 
projection algorithm (MFX-AP, [3]) and the multi-channel 
modified filtered-x RLS algorithm (MFX-RLS, [3]). We 
used in our simulation 0.995λ =  and the reference signal 
was a white noise with zero mean and variance one. The 
simulations were performed with acoustic transfer functions 
experimentally measured in a duct. The impulse responses 
used for the multi-channel acoustic plant had 64 samples 
each ( 64M = ), while the adaptive filters had 100 
coefficients each ( 100L = ). The step size μ  for the AP 
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algorithms was 1. The performance of the algorithms was 
measured by  
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( )
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2

10 2
10 log

k
k

k
k

E e n
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E d n
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= ⋅

⎡ ⎤⎣ ⎦

∑
∑

 

(10) 

Fig. 2 compares the performance of the selected algorithms 
with ideal plant models, for a multi-channel ANC system 
obtained from Matlab™ implementations of the algorithms 
( 1,  3,  2I J K= = =  were used). For the AP algorithms a 
projection order of N = 5 was used. Fig. 2 shows that the 
MFX-DCDAP algorithm obtains almost identical 
performance with MFX-AP for 8uN =  iterations and 

16bM =  bits. Also, it can be seen that the MFX-
DCDAERLS and MFX-RLS algorithms have the same 
initial convergence speed. However, the MFX-DCDAERLS 
algorithm has a loss in attenuation due to the approximation 
used in deriving the algorithm. Simulations have shown that 
this approximation increased the numerical robustness of 
the algorithm. As expected, the MFX-RLS and MFX-
DCDAERLS convergence performance is better than that 
of the MFX-AP algorithm.  

Fig.2 Convergence curves of multichannel delay-
compensated modified filtered-x algorithms for ANC, with 
ideal plant models ( 1,  3,  2I J K= = = ; 8uN = , 16bM = , 

and 1/ 2H =  were used for DCD versions) 

 
Fig. 3 shows the norm difference between the ideal and 
DCD computed linear system solutions for different uN  
and bM values. As expected the error decreases for higher 

uN  and bM values. However, the error difference is 
smaller after the algorithm converges. This suggests that the 

uN  and bM parameters can be reduced when the algorithm 
converges. The implementation using 8 DCD iterations and 
16 bits provides a very small dB difference between the 
DCD based AP version and the AP algorithm that uses the 
ideal matrix inverse. The average DCD complexity is 
around 60% of the theoretical SAC peak complexity. The 
DCD part increases the number of additions, but it has no 
divisions or multiplications.  

Fig.3. The norm difference between ideal and DCD 
computed system solutions for different uN  and bM values 

 
So far ideal plant models had been assumed. The noise 
added to the ideal plant models was added on a frequency 
by frequency basis, where a random complex value with a 
magnitude of 20 dB less that the original magnitude was 
added to each frequency in the frequency response [3]. Fig. 
4 shows the performance when plant models with a 10 dB 
SNR were used in the monochannel case. It can be seen that 
the MFX-RLS algorithm performance is the most affected, 
and its known potential numerical instability is exacerbated. 
The other considered algorithms are more robust to noisy 
plant models. Therefore, the proposed DCD based 
algorithms are interesting options for practical 
implementations.  

Fig. 4. a) Attenuation difference between the multichannel 
delay-compensated modified filtered-x ANC algorithms 

with ideal plant models and those using plant models with a 
SNR of 20 dB ( 1,  1,  1I J K= = = , 8uN = , 16bM = , and 

1/ 2H = ); 

4 Computational complexity 

Matrix inversions of the initial algorithms were assumed to 

be performed with standard LU decomposition: { }23XO  
multiplies, where X  is the size of a square matrix. The 
numerical complexities of the considered algorithms is 
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measured by the number of multiplications per algorithm 
iteration [3]:  

( 2 2 )MFX DCDAPC IJK M L KN IJL JKM− = + + + +  (11) 
2 2

2 2 3 3

(2 2 ) (1 )

               + 2
MFX APC IJL KN K N JKM I

K N K N
− = + + + + +

+
 

(12) 

( ) ( )
( )

2 2 2 2 2 2

2 3

2 2 3

                   / 2
MFX RLSC L I J K I J L IJK IJK IJ

M IJK JK K K K
− = + + + + +

+ + + +
 (13) 

( )( )1 / 2 2 1 ( 1)MFX DCDAERLSC IJL IJL K K JKM I− = + + + + +  (14) 

 
Algorithm for 

multichannel ANC, 
L=100, M=64, N=5 

Multiplies per 
iteration for I=1, 

J=1, K=1 

Multiplies 
per iteration for 
I=1, J=3, K=2 

MFX-DCDAP 438 2388

MFX-AP 3916 37968

MFX-DCDAERLS 10428 137268

MFX-RLS 30730 455278

Table 1. Comparison of computational load of                     
the DCD based algorithms with the original delay-

compensated modified filtered-x algorithms for ANC 

It can be seen from Table 1 that the DCD based MFX 
algorithms are much less complex than their counterparts. 
The reduction in complexity depends on the values of the 
parameters (I, J, K, L, M). However, for the mono-channel 
case the reduction is at least 66%, while it is even about 93 
% for the AP algorithm in case of the multi-channel case. 

5 Conclusion 

The use of the dichotomous coordinate descent algorithm 
has been investigated in order to avoid matrix inversions 
encountered in typical ANC algorithms. It is shown that 
important computational savings can be obtained. Also, the 
convergence properties of the proposed algorithms with 
ideal and noisy acoustic plants have been studied. It is 
proved by simulations that the proposed DCD based 
algorithms can be an interesting option for practical ANC 
systems. 
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