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Computational forecasts of near-ground sound levels are compromised by uncertainty and discretization
errors in the atmosphere and terrain representations, and by simplified or incorrect physics. For an
incompletely known environment, a model’s predictive power cannot be assessed without first quantifying
its sensitivity throughout the parameter space. Knowledge of these sensitivities throughout the spatial
domain also is essential for effectively investing data-gathering resources to support sound propagation
forecasts. Sensitivity analysis therefore is central to raising the relevance of computational acoustics
in practical applications. These considerations should motivate practitioners to adopt a consistent
framework for sensitivity and uncertainty analyses. Topics to be discussed include: (1) standard
uncertainty taxonomies in computational mechanics, (2) why uncertainty about a parameter should be
distinguished from sensitivity of a model to that parameter, (3) sources of uncertainty in the near-ground
acoustics, (4) a sampling-based sensitivity analysis framework that facilitates estimating typical and
extreme values of sensitivities at each point in the spatial domain (i.e., full-field sensitivities), (5) factors
to be aware of when applying sensitivity analysis to forecasts of near-ground sound propagation, and (6)
ways of examining sensitivity estimates to facilitate insight.

1 Sensitivity analysis and uncer-
tainty quantification

1.1 Defining the context

Predictions of near-ground sound propagation are com-
promised by statistical uncertainty and model errors
in how the atmosphere and terrain are characterized.
High quality physical and numerical representations are
available, but imprecise knowledge of the heterogeneous
propagation environment impedes attempts to achieve
spatial and temporal accuracy in sound field predictions
[27]. Embleton [5] summarizes many of these environ-
mental factors, which include (i) the topography and
acoustic impedance of the ground or lower boundary of
the propagation domain; (ii) the interaction of the wind
and radiative exchanges with this surface, which alters
the velocity and thermal gradients in the atmospheric
surface layer (ASL); and (iii) spatio-temporal variability
in atmospheric turbulence. We study full-field sensitiv-
ity analysis of near-ground sound propagation through-
out the model parameter space, and we summarize a
recent framework for computing these sensitivities. The
concepts and method presented here can support efforts
to define propagation environments so as to ensure high
confidence in the predicted sound fields, primarily by
promoting the effective use of measurements to support
predictions and by providing insight into how limited
knowledge compromises predictions.

To bridge the gap between making predictions and
justifying confidence in those predictions, the challenge
of accounting for the multiple sources of uncertainty de-
scribed above and their interactions must be addressed.
This concern is common to all disciplines that involve
the use of complex predictive models, so the field of
verification and validation (V&V) of computational me-
chanics models is evolving to help bridge this gap. Or-
ganized efforts to codify V&V concepts and methods in-
clude, among others, a guide by the American Institute
of Aeronautics and Astronautics [1] for computational
fluid dynamics and the more recently published guide
for V&V in computational solid mechanics [21].

These documents cite uncertainty quantification (UQ)
as a crucial step in the larger problem of verifying and
validating predictive models. UQ is too broad to be en-
capsulated here, so we limit its definition to the process
of constructing probabilistic models for forcing func-

tions and system parameters, and transforming these
models through a network of computational mechanics
models to predict the distribution of a response pro-
cess. Models will be called deterministic when they do
not depend directly on the recognition of uncertainty.
Non-probabilistic or generalized probabilistic methods,
which commonly involve the introduction of fuzzy or
non-additive measures, are not considered; see Ben-Haim
[2] and Nikolaidis, et al. [13] for extensive introductions.
Assessing deterministic model validity, i.e., physical fi-
delity, also is not addressed.

1.2 Local, global, and full-field sensitiv-
ity analyses

Sensitivity analysis (SA) of a computational model is re-
stricted here to the organized assessment of changes in a
model’s output due to changes in the parameters. UQ of
any complex, multiple parameter model ought to begin
with SA to reveal the parameters that can induce the
most imprecision and randomness in the response. Do-
ing so helps to determine the relative accuracies required
in measurements and probabilistic parameter models.

The most direct SA is to compute through analysis
or finite differences how variations in the neighborhood
of an baseline parameter values influence an output of
interest; this local SA [19]. A parallel but distinct con-
cern, especially when SA is used to support UQ, is how
to estimate efficiently the range of sensitivities through-
out the feasible portion of the multidimensional param-
eter space; this is global SA [19]. The difference is im-
portant when a model exhibits substantial variations in
its parameter sensitivities, i.e., nonlinear sensitivities, as
various neighborhoods in the parameter space are inter-
rogated [19, 24].

The output of interest often is a subset of response
variables or a functional of the primary output, e.g., the
integrated aerodynamic forces on a wing. Less often, SA
methods are used to examine the spatially-varying in-
fluence of parameters, such as how a response field, e.g.,
the near-ground sound pressure level in an open field,
is affected by parameter variations. We refer to this as
full-field sensitivity analysis (FFSA). In the SA method
described herein, we compute sensitivities throughout
both the parameter space and the spatial grid in which
the response field is simulated; hence, we call this global,
full-field sensitivity analysis, or global FFSA.
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1.3 Applying sensitivity analysis to com-
putational mechanics models

Dosso, et al. [4] recently commented on the difficulty
of making the leap from local to global sensitivity mea-
sures, but they did not use this terminology. A more
complete discussion will not fit here, but we recommend
considering the following points:

• Sensitivity to a parameter must be distinguished
from uncertainty about that parameter’s value, as
sensitivity is a local characteristic of the physics
model; only the analysis of sensitivity may be global.
Mixing the definition of sensitivity with uncer-
tainty confounds the interpretation of sensitivity,
which exists in the physics of a specific system
model, with epistemic and aleatory uncertainties,
which depend on how precisely the system’s prop-
erties and behavior are known. This is similar to
the standard distinction in risk analysis (e.g., see
Stamatelatos, et al. [22]) between a hazard and
its consequences, which in our discussion are col-
lectively analogous to sensitivity, and exposure to
that hazard, which here is analogous to parameter
uncertainty.

• Parameter interactions in a model will not be de-
tected in first-order, local measures of sensitivity,
which are found by changing only one parameter
[24]. Scatter plots and statistics from Monte Carlo
sampling (e.g., [7],[15]), principal component anal-
ysis of first-order sensitivities [24], and variance
decomposition techniques [8] may highlight the ef-
fects of simultaneous parameter variations. Helton
and Davis [7, p. 122] conclude that “... examina-
tion of scatter plots is always good starting point
in a sensitivity study.”

• When analytical derivatives are not available, lo-
cal response surfaces based on standard design of
experiments methods may be used to estimate sen-
sitivities, including interaction terms [3]. This ap-
proach should be preferred over more empirical
finite-differences because regression offers statisti-
cal measures of the quality of the fit, which help
to assess confidence in the estimated sensitivities
and to detect the presence of higher-order terms
not represented in the chosen polynomial.

2 Sampling-based, full-field sen-
sitivity analysis

In this section we present our method for global FFSA
based on reduced-order models (ROMs). Sec. 2.1 out-
lines the method and its beneficial aspects, and Sec. 2.2
summarizes a recent application of this method to com-
putations of the near-ground sound pressure level in a
refracting atmospheric surface layer.

2.1 Framework

We combine Latin hypercube sampling (LHS) [7, 8],
proper orthogonal decomposition (POD) [9, 11], and a
Bayesian forecasting method to perform sampling-based

SA [7, 8] throughout both the spatial domain in a com-
putational mechanics model and a broad region of the
underlying parameter space. Pettit and Wilson [15] pro-
vide some details of the method and an extensive anal-
ysis of its application to a six-parameter, near-ground
sound propagation problem. In a complementary paper,
Pettit and Wilson [16] offer a more complete derivation
of the SA method and demonstrate a way to estimate
the forecast uncertainty of the sensitivities.

LHS is used to select samples from the full range
of possible parameter combinations, and the model is
solved to produce the associated response fields. POD
is used to condense this ensemble in terms of a small
number of orthogonal basis vectors, i.e., POD modes.
FFSA is done efficiently by estimating the sensitivity
of each POD coefficient and combining these coefficient
sensitivities into an estimate of the process’s sensitiv-
ity at each spatial grid point. The Bayesian forecasting
method uses cluster-weighted models (CWMs) [6] of the
POD coefficients to regularize the estimation of sensi-
tivities. A CWM is computed for each POD coefficient,
and sensitivities of each CWM’s conditional forecast are
found through either local regression or analytical dif-
ferentiation. Local regression was employed first [15],
but analytical differentiation recently was shown to be
much faster and more robust [16].

The payoff from using CWMs in place of the more
common polynomial response surfaces is that CWMs
are easily tailored to encode local nonlinear variations
in the training data; in this sense, the CWMs fill the
same role as neural networks often do, but CWMs have
the merit of naturally providing an estimate of the con-
ditional forecast variance (see Sec. 2.2), which gives in-
sight into the precision of the forecasts. The CWM
framework also seems to the authors to be somewhat
less empirical and more transparent than common neu-
ral network architectures, and they seem to require less
training to achieve satisfactory out-of-sample accuracy;
however, no rigorous study was found that compares the
performance of neural networks and CWMs.

Notable benefits of this SA method are summarized
here: (1) it may be used with any existing computa-
tional model in a wrap-around manner, (2) it provides
a built-in mechanism for estimating its own forecast un-
certainties, and (3) it yields analytical sensitivities of the
ROMs directly, so no approximations are made beyond
those intrinsic to the ROMs based on POD and CWM.

2.2 Global, full-field sensitivities of near-
ground sound pressure level

Two-dimensional fields of near-ground sound pressure
level in a refracting atmosphere were computed with a
wide-angle parabolic equation (PE) approximation [25,
18], which is solved with the Crank-Nicholson scheme.
The 2-D domain included 0 ¤ x ¤ 1000 m parallel
to and 0 ¤ z ¤ 400 m above the flat ground, and a
150 Hz source was placed at x � 0.0 m and z � 1.0 m
above the ground. Turbulence was not included in the
calculations, and the ground’s acoustic impedance was
represented by a relaxation model [26, 12]. The mean
wind and temperature profile were represented through
Monin-Obukhov similarity theory [14, 23]. For each
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Table 1: Parameters in the Monin-Obukhov similarity
model for wind speed and temperature profiles and the

relaxation model for ground acoustic impedance.

Parameter Symbol Units Values
Porosity Ω n/a 0.525
Flow resistivity σ kPa � s{m2 r150, 600s � 103

Surface heat flux Qs W/m2 0
Friction velocity u� m/s 0.3
Wind direction α deg r0, 180s
Roughness length z0 m 0.05

LHS realization, the output was the sound pressure level
(SPL) in dB (i.e., 20 times the logarithm of the complex
sound pressure amplitude relative to the free-field sound
pressure amplitude) at each grid point.

We [15] recently performed a preliminary SA with
the six parameters listed in the first column of Table 1,
but we show a restricted case here because of limited
space. Only the wind direction, α, and flow resistiv-
ity, σ, were allowed to vary over the ranges described
in Ref. [15]; the other parameters were fixed as listed
in Table 1 to indicate typical mean conditions at mid-
latitudes in open fields. N � 250 Latin hypercube sam-
ples was selected from the σ and α ranges. For each
sample vector, the ground’s acoustic impedance, and
wind and temperature profiles were computed. The PE
model then was solved for each parameter combination
to estimate the associated sound pressure fields.

From this ensemble of Ns � 250 realizations, the
POD modes, tϕuNs

n�1, were computed and the Nr � 6
strongest modes were retained for simulations through-
out the parameter space. A CWM model was then found
for each of the retained POD coefficients, tapnquNr

n�1; e.g.,
Fig. 1 shows the CWM of the strongest mode, the loca-
tions of LHS samples, and the exemplar from each clus-
ter. Realizations from additional samples, pσpωq, αpωqq,
where ω is an element of the sample space, were then
computed through a linear combination of the retained
POD modes:

ppσpωq, αpωqq �
Nŗ

n�1

ϕna
pnqpσpωq, αpωqq. (1)

Because each CWM, fpapnq, ζ 1q, is actually an a pos-
teriori estimate of a POD coefficient’s probability den-
sity function throughout the sampled ζ � pσ, αq range,
the CWM forecast of each apnq for a given ζ � ζ 1 is the
conditional expectation,

A
apnq

��ζ 1E �

»
apnqfpapnq, ζ 1q dapnq (2)

and the forecast uncertainty is estimated with the square-
root of the conditional variance,

@
σ2
apnq

��ζ 1D �

» �
apnq �

A
apnq

��ζ 1E	2

fpapnq, ζ 1q dapnq.

(3)
Fig. 2 shows the ensemble mean of the SPL forecast
uncertainty, which was computed through a simple ad-
ditive error model, i.e., by replacing each apnq in Eq. 1

150 Hz: Mode 250 CWM

σ̂

α̂

 

 

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−800

−600

−400

−200

0

200

400

Figure 1: Cluster-weighted model of the strongest SPL
mode obtained through proper-orthogonal

decomposition. Normalized flow resistivity, pσ, and
wind direction, pα, are the independent variables. Black
circles are parameter values from the Latin hypercube

training samples. Red plus symbols are the final
location each cluster’s mean parameter vector.

with
@
σ2
apnq

��ζ 1D 1
2 . Although each

@
σ2
apnq

��ζ 1D 1
2 is by defi-

nition positive, the SPL forecast uncertainty can be neg-
ative in parts of the spatial domain because the POD
modes may contain negative values. Pettit and Wilson
[16] show plots of the modes used here.

An ensemble of 100 full-field SPL sensitivity fore-
casts, Spσ and Spα, were computed to allow examina-
tion of the associated sample statistics. The absolute
value of the sensitivity of each realization was used to
compute the mean sensitivity because Spα was found
to depend greatly on whether a given realization fea-
tured upwind (90 deg ¤ α ¤ 180 deg) or downwind
(0 deg ¤ α   90 deg) conditions. Fig. 3 shows that
mostly negative values of Spα were found for upwind con-
ditions and primarily positive values were found down-
wind conditions. Consequently, when these forecast sen-
sitivity realizations were averaged democratically, the
mean values misleadingly small. This gave the impres-
sion that SPL depended little on the wind direction,
which empirically is false. Using the absolute value of
the sensitivity forecast provides a more realistic picture
of the importance of wind direction. |Spα| was found to
be greater than |Spσ| throughout most of the spatial do-
main, especially in upwind conditions. They are most
comparable near the ground in downwind conditions.

Fig. 4 shows the ensemble mean value of the forecast
uncertainty, i.e., the conditional standard deviation, in
the 100 SPL sensitivity realizations. Uncertainty in the
forecast of the SPL sensitivity both to static flow re-
sistivity and wind direction is greatest near the ground
and at downrange locations because these locations also
exhibit the greatest variation in sensitivity; see Pettit
and Wilson [16] for more details.

3 Conclusions

Global sensitivity analysis of complex models is facili-
tated through efficient reduced-order models. Latin hy-
percube sampling and proper orthogonal decomposition
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Figure 2: (Top) Ensemble mean forecast uncertainty in
the sound pressure level (SPL) expressed in decibels.

This plot is based on a new Latin hypercube sample of
100 realizations. (Bottom) Same as top frame but

scaled at each spatial location by the corresponding
ensemble mean SPL of the original set of 250

realizations to estimate the relative uncertainty.

x (m)

z 
(m

)

flowResistivity

 

 

200 400 600 800 1000

25

50

75

100

125

150

175

0

0.1

0.2

0.3

0.4

x (m)

z 
(m

)

alpha

 

 

200 400 600 800 1000

25

50

75

100

125

150

175

−2

−1.5

−1

−0.5

(a) Upwind

x (m)

z 
(m

)

flowResistivity

 

 

200 400 600 800 1000

25

50

75

100

125

150

175

0

0.1

0.2

0.3

0.4

0.5

x (m)

z 
(m

)

alpha

 

 

200 400 600 800 1000

25

50

75

100

125

150

175

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Downwind

Figure 3: Ensemble average of the full-field SPL
sensitivities for a 150 Hz source, but conditioned on

upwind (90 deg ¤ α ¤ 180 deg) and downwind
(0 deg ¤ α   90 deg) realizations.
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Figure 4: Ensemble mean values of the forecast
uncertainty in the 100 SPL sensitivity realizations:

(top) uncertainty in Spσ; (bottom) uncertainty in Spα.

were employed, in conjunction with cluster-weighted mod-
els of the POD coefficients, to simulate response fields
and their sensitivities to governing parameters. POD
was essential to reducing the dimensionality of the dis-
cretized response in a standard near-ground sound prop-
agation example application.

Our method produces global, full-field sensitivities.
An apparently unique result is an estimate of the sen-
sitivity uncertainty, which helps to assess the credibil-
ity of forecast sensitivities in insufficiently-sampled re-
gions of the parameter space, and also might be useful
in assessing the ability of a grid to adequately resolve
localized features in a probabilistic computational me-
chanics model. Pettit and Wilson [16] itemized several
factors that can affect the forecasts as well as their un-
certainties. These factors define the necessary compo-
nents from which the ROMs are assembled, so analyzing
the sensitivity of the forecasts to these choices may be
viewed as a broader form of global sensitivity analysis
than we have performed here; Insua, et al. [10] thor-
oughly explore this perspective.

In the near-ground sound propagation application,
ensemble statistics of the sound pressure level sensitivi-
ties depended strongly on whether upwind or downwind
propagation conditions prevailed. A related potential
pitfall in sampling-based sensitivity analysis is the ex-
istence of voids in an ensemble due to sparse sampling
of the parameter space. These voids can produce incon-
sistencies between model training and testing ensem-
bles, and thereby complicate comparisons. They also
can compromise assessments of parameter interactions.

Extreme values of a sensitivity at each grid point
may be roughly estimated from the associated sample
statistics. Relative values of the estimated extreme sen-
sitivities suggest that uncertainty about both of the pa-
rameters considered here should be included in an uncer-
tainty model if randomness, measurement imprecision,
or both are expected to affect the parameters. The con-
sequences of randomness and measurement imprecision
depend too much on the details of a model to permit
further generality here, but full-field sensitivity contour
plots like those presented above should help to guide
future studies.

The robustness and utility of any global FFSA method
depend on sampling the full range of parameter varia-
tions. Latin hypercube sampling was expedient in meet-
ing this objective, but perhaps would be surpassed by
more recently developed approaches, e.g., latinized cen-
troidal Voronoi tesselation [17]. However, the most ef-
fective use of the forecast uncertainty estimate might be
in conjunction with an incremental sampling method,
the goal being to run more simulations only in those re-
gions of the parameter space that produce high forecast
uncertainties. More work is needed to determine the
practical utility of implementing these changes.

Parameters were represented here as independent ran-
dom variables. The payoff from modeling them as ran-
dom fields, e.g., with a specified level of spatial cor-
relation, would depend on whether the physics of the
system model are sensitive to this correlation. Scatter
plots like those shown elsewhere by the authors [15, 16]
should support this assessment, but the analyst’s phys-
ical insight should be at least as important.
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