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Resonances in small rooms may lead to inadequate frequency responses. In rooms, where the exigencies on the 
listening conditions are important, these resonances may cause non wanted coloration effects, which imply a non 
desirable sound quality. Choosing the correct shape and dimensions it is possible to reduce the audible effects of 
these resonances. The presented methodology aims to determine the shape and size of small and medium 
polygonal-shaped rooms based on the finite element method for modeling the physical acoustic behavior of the 
room; a neural network for loudness estimation and genetic algorithm for estimating the optimal dimensions. A 
comparison with previous techniques used to choose the dimension of rectangular room is also presented.  

1 Introduction 

The sound field in a room is characterized by the acoustical 
properties of the room and the audio system therein. The 
pitch response and the balance in the timbre depend on the 
room geometry and the position of the sound sources and of 
the listener. The aims of this paper is to propose a room 
design criterion, which diminishes the psychoacoustical 
effects of the low-frequency resonances, based on 
optimizing the room dimensions considering the one aspect 
of the human auditory response. The main problems at low 
frequencies are due to the relatively low modal density. 
Most of the proposed solutions to address this problem have 
been developed for the case of rectangular rooms, and they 
have been based on choosing room dimension proportions 
as well as by positioning the sound sources and the use of 
resonators. The main objective of this article is to present a 
different perspective to address the acoustical room design. 
The problem will be addressed from the field of 
psychoacoustic instead of the architectural and physical 
acoustics one.  
In this aspect the method to be presented is characterized by 
searching for the room dimensions which produce equal 
loudness at the low frequency bands, i.e. the sound pressure 
level should agree -as far as possible- with some of the 
loudness curves shown in Fig.1. These curves represent the 
response of human the auditory system based on the sound 
pressure and the frequency, giving the sensation of equal 
sound amplitude [1,2]. 
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Fig.1 Equal Loudness Level Curves. 

2 Bibliographical Antecedents 

2.1 Previous Works 

Most of the methodologies to diminish and to avoid the 
colorations in the design rooms are based on rectangular 

enclosures and mainly they consist of the choosing of the 
proportions adapted between width and height. Those 
methods try to avoid degenerated modes where multiple 
natural frequencies fall into a one narrow frequency band. 
The equation Eq. (1) determines the resonance frequencies 
of a rectangular enclosure; this equation is the base of 
diverse methods to determine the proportions an enclosure. 
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Where 
zyx nnnf ,, are the natural frequencies, 

zyx LLL ,,  are the 

dimensions of the rectangular room, 
zyx nnn ,, are the modal 

numbers and c is the speed of sound 
 
The Bolt method [3] is based on the average distance 
between resonant frequencies; the most known proportions 
are 2: 3: 5 and 1: 21/3: 41/3. Louden [4].developed a set of 
more exact and preferred proportions based on the standard 
deviation of the space between modes and not on the 
distance average, producing the well-known radius 1: 1.4: 
1:9. Bonello [5] developed a criterion based on the fact that 
the modal density must never decrease as the frequency 
increases. These and other methods [5,6] have their 
limitations, the main one is they are applicable to 
rectangular halls with perfectly reflecting surfaces. The 
absorption not only influences the amplitude of the sound 
pressure in the modes, it is also responsible for the 
resonance frequency shift. Cox, et. al. [7] developed a new 
methodology using optimization techniques for rectangular 
enclosures. They found the following optimal dimensions, 
1: 2.19: 3 and 1: 1.55: 1.85. 

2.2 Description of the New Method 

The methodology presented in this article consists of a 
modification of the work by Cox et. al. using shape 
optimization in order to determine the room dimensions in 
such a way of the frequency response is isophonically flat 
instead of the flattest frequency response. This will be done 
for the frequency range 20-200 Hz. In this first stage of the 
work it will not be considered sound absorption of the 
enclosure’s surfaces. The shape optimization consists in 
causing geometric or structural changes in order to obtain a 
desired frequency response of the room that is being 
designed. The set of modifications must be restricted in 
order to satisfy other requirements, such as space 
limitations. In this case the features of the room are 
modeled as a multidimensional function called objective 
function from now on, function of cost or fitness function, 
which depends on the design variables. A search region will 
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characterize the restrictions i.e. the maximum and minimum 
dimensions of the room. 

3 Mathematical Model of the Sound 
Field of a Polygonal-Shaped Room 

3.1 Formulation of the Problem and 
Application of the Method of Separation of 
Variables 

The enclosure is excited by a point source of flat spectrum. 
This can be represented using the following equation partial 
differential and its respective boundary conditions. In order 
to simplify the problem the stationary solution in the 
frequency domain will be only studied. When considering a 
harmonic solution one can obtain the Helmholtz’s equation. 

 0ˆ022 =⋅∇=+∇ nPPkP  (2) 

By using the method of variables separation the following 
equations and boundary conditions are obtained: 

 ( ) ( ) ( )zPyxPzyxP zxy ,,, =  (3) 

For the dependency in z  
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For the dependency in yx,  
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Is due to fulfill that: 

 222
zxy kkk +=  (6) 

The equation and the boundary condition Eq. (4) have a 
well-known solution [8]. While the equation Eq. (5) and its 
respective boundary condition can be solved by using the 
Finite Elements Method [9]. Specifically it is possible to 
interpret these equations like a membrane with of Neumann 
boundary conditions. Thus the natural frequencies can be 
calculated as [10]: 

 22
zxynn kkc

zxy
+=ω  (7) 

Finally the sound pressure for any point rr  inside the 
enclosure produced by a point source located in 0rr  at the 
frequency ω , is the result of the combination of the 
solutions of the equations Eq. (4). and Eq. (5). 
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0ρ  is the density of the air and 0U  is the vibratory 
velocity of the surface of the source. 

3.2 Determination of the Loudness Levels 
Using Neuronal Networks 

The loudness may be defined as the sensation that 
corresponds most closely to the sound intensity of a 
stimulus [1]. An equal-loudness contour is a curve that ties 
up sound pressure levels having equal loudness as a 
function of frequency. In other words, it expresses a 
frequency characteristic of loudness sensation. 

In this work a loudness model, implemented by using 
artificial neural network, has been developed from the 
equal-loudness-level contours data presented in [2] and 
following the procedure employed by [11]. The presented 
model aims to perform an accurate loudness calculation at 
low frequencies. This objective is different to the one of the 
previously presented model, which is a loudness model for 
a wide frequency range. 

The artificial neural network [12] was trained by using the 
Quasi Newton Backpropagation algorithm with 3000 
epochs and an objective goal of 10-5. The final 
configuration corresponds to a three layer feedforward 
neural network with 5 neurons in the hidden layer and 1 
neuron in the output. The transfer function of the hidden 
layer is sigmoidal hyperbolic tangent and for the output 
layer is a linear function. The inputs to the neural network 
are the frequency and sound pressure level and the output is 
the respective loudness level. 

4 Optimization Using Genetic 
Algorithm 

The optimization techniques are used to determine the 
best possible design in engineering problems. In our case it 
will be used to determine the optimal shape of a small 
and/or medium polygonal shaped enclosure, in order to 
obtain the best psychoacustical response. The proposed 
objective function ( )xrf corresponds to the variance of the 
loudness level response versus the frequency. 

 ( ) ( )( )∑
=

−=
N

n
LL LnL

N
f

1

21xr  (10) 

Where ( )nLL , is the loudness level at the nth frequency, 

LL is the average loudness level and xr is the vector of the 
variables of design that contains the coordinates of the 
points that form the room. The optimization problem that 
sets out is characterized by a strong nonlinear interrelation 
between the variables and the fitness function, also the 
function has many peaks and dips which makes the solution 
oversensitive to the dimensions of the enclosure. For this 
reason, the curve of frequency response has been smoothed 
and the method of Genetic Algorithm has been chosen [13] 
which have been demonstrated to be efficient in varied 
problems of acoustics and vibrations [14, 15]. These 
methods work maintaining a population of the competent 
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designs that are combined to find improved solutions. In its 
basic form each member of the population is represented by 
a binary sequence that codifies the variables that 
characterize the design. The search progresses manipulating 
the sequences in the population to provide in the new 
generations of better characteristic designs on average than 
its processes of predecessors that are used to look for these 
improved designs imitate those of the natural selection. 

5 Numerical Simulations 

5.1 General Considerations 

The optimization was done in the frequency range 20-
200 Hz, although this range can be extended. The main 
results of the optimization process will consist in avoiding 
degenerated modes. The points of emission and reception 
are the opposite corners. In this work the optimization of 
the sound source position and the listener position will not 
be treated. The sound source is a point one with constant 
speed. The dimensional limits of the 21 sides polygon  are, 
4m ≤ Lx ≤ 10m, 5m ≤ Ly ≤ 15m and 2m ≤ Lz ≤ 5m. The 
population size is 63 and the number of generations is 
1000.The comparisons with rectangular rooms are done for 
enclosures that have equal height and the width and length 
proposed in this article are obtained through the proposed 
relations of optimal proportionality [1, 2, 7]. The result was 
also compared with the one obtained from the objective 
function proposed by Cox et al. (see Fig.2.). The 
advantages of the proposed function in this work over the 
developed ones previously [3, 4, 5, 6, 7] are: 

• To represent the response of the human auditory 
system and its interaction with the sound field. 

• Diminish the fluctuations of the sound pressure 
level due the resonances. 

• To increase the loudness, therefore the sound 
pressure level at lower frequencies. 
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Fig.2 Proposed Fitness Function. 
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Fig.3 Optimal Geometry. 
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Fig.4. Loudness Levels - Differences between the presented method and the classic proportions 
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5.2 Results 

The optimal geometry of the room is shown in the figure 3. 
The figure 4 shows the loudness level differences between 
the proposed method, i.e. the optimal polygonal shaped 
room, and the classic design of rectangular rooms [3, 4, 7], 
all having the same height (2.434 m). The polygonal shaped 
room has better distribution of the loudness level in 
frequency than the rectangular ones. In the Table 1 the 
values of the objective functions (Cox et. al. and present 
work) for the different design methodologies for 
rectangular rooms are presented. 
 

Room ( )xrf Cox 
et. al. 

( )xrf  Floody 
- Venegas 

Bolt (2 : 3 : 5 ) 72.986308 720.263885 

Bolt (1: 7/3 : 13/3 ) 98.998914 715.801163 

Louden (1 : 1.4: 1.9) 61.659613 713.114722 

Cox et. al.(1 : 2.19 : 3) 71.455481 681.640776 

Cox et. al.(1:1.55:1.85) 59.291149 703.686551 

Optimal Room (Fig. 3) 39.227699 328.153898 
Table 1 Values of the Objective Functions. 

The lower values of the objective function indicate a better 
performance of the room. 

6 Conclusions 

The proposed method fulfills the objectives drawn up 
obtaining a better performance than the recommendations 
of proportions of length, width and height found in 
literature.  

The main reason is that many of these criteria were 
constructed on the basis of proportions, i.e. that the height 
of the enclosure was equaled to the unit; although the 
proportions of the room is maintained, when it goes to the 
real dimensions, not always is efficient in the frequency 
band of interest, because the height is considered 
independent variable compared to the width the length. For 
this reason will not recommend proportions, because each 
problem of optimization depends on the space search 
imposed by the restrictions, i.e. the maximum and 
minimum dimensions of the room. 
 
On the other hand the criterion of equal loudness proposed 
in this work is much more demanding than the one based on 
flat frequency response. 
. 
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