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In reed and brass instruments, sound is produced by self-sustained mechanical oscillations driven by an airflow
coming from a pressure supply such as the player's lungs. Most of the time, the fundamental frequency of a
periodic oscillation is close to, and mainly controlled by, one given acoustic mode. These oscillations are the
result of a complex non-linear coupling between all the acoustic modes and the mechanical valve. However, the
pedal note, which is the lowest note that can be sounded on a brass instrument, is well-known as a counter-
example. Eighty years ago, Bouasse did an experiment by replacing the brass mouthpiece with a reed
mouthpiece on a brass instrument, and obtained a pedal note a fifth below!

An elementary model dedicated to both cane-reed and lip-reed instruments can be used in order to investigate the
sound production of pedal notes, using a time-domain simulation method. Then, the periodic solutions of this
model are obtained, and the mysterious oscillation regimes of the Bouasse experiment are discussed.

1 Introduction

In reed instruments the sound is the consequence of self-
sustained mechanical oscillations driven by an airflow
produced by a pressure supply such as the player's lungs.
The oscillations are coming from the destabilization of the
mechanical valve, the reed (cane-reed of woodwinds, lips
of the brass player). A reed is an oscillating valve which
modulates the flow driven by a pressure difference between
upstream (player's mouth) and downstream (instrument's
mouthpiece). Then the oscillations are induced by the
coupling of a localized non-linear amplifying element (the
source resulting from the valve-flow interaction) with a
pipe, the instrument itself, in which acoustic energy can
accumulate in resonant modes (standing waves). As a
consequence, the playing frequency, i.e. the fundamental
frequency of the periodic acoustic oscillation, is---most of
the time---very close to one of the acoustic resonance
frequencies of the instrument itself. The pedal note, which
is the lowest note that can be sounded on a brass instrument
(Fig.1), is well-known as a counter-example (see for
example Benade [1]).

Fig.1 Tenor trombone (left) and saxhorn (right).

When playing a Bb brass instrument, a set of notes close to
the Bb harmonic series is obtained. For “conical” brass
instruments such as saxhorns, the playing frequencies of the
set of notes are very close to the set of the harmonically
related resonance frequencies (see the measured input
impedance of a saxhorn in Fig.2). For “cylindrical” brass
instruments such as trombones the playing frequencies of
the set of notes are close to the set of the resonance
frequencies. However, the first regime, called the Bb pedal
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note, does not correspond to the first resonance frequency
(which is something like an Eb), but is in fact a Bb,
approximately a fifth higher (see the measured input
impedance of a trombone in Fig.2). Eighty years ago,
Bouasse [2] did an experiment illustrating these phenomena
without the need of input impedance measurement set-up.
A similar experiment is described here: by replacing the
trombone mouthpiece by a clarinet mouthpiece and a cane
reed, the lowest regime easily playable is not the Bb pedal
note but lies approximately a fifth below, at the first
resonance frequency.

Brass and woodwind instruments have many acoustical
features in common, particularly from the valve effect point
of view. Then the physics of the reed interaction with the
air flow, and the coupling with the resonator, the instrument
itself, can be described by an elementary model whose
solutions can illustrate playing both cane-reed and lip-reed
instruments. The aim of the present work is to test the
elementary model by comparing its lowest periodic
solutions with the pedal notes of brass instruments. In other
words, is it possible to reproduce the Bouasse experiment
with simulations? After this introduction (chapter 1), the
theoretical context (the elementary model and the
simulation method) is briefly summarised (chapter 2). Then
the results of the experiments and of the simulated pedal
notes are presented and discussed (chapter 3), by comparing
their fundamental frequencies.

2 Modelling brass instruments

An elementary model of both cane-reed and lip-reed
instruments can be summarized by the three following
equations Eq.(1), (2) and (3).

The vibrating mechanical reed (cane-reed or lip reed) is
represented by a one DOF system relating the opening
height h(t) between the reed and the mouthpiece tip (or
between the two lips), and the pressure difference between
a constant mouth pressure P, and the acoustic pressure p(t)
in the mouthpiece:

d>h(?)
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where the parameters g is a damping parameter, ®, a reed
resonance angular frequency, and p an effective mass per
area parameter of the reed.

The volume flow u(t) entering into the instrument is written
as a function of h(t) and the pressure difference P, — p(t) :

u(t) = wh(z) 2(’%7(’))
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where w is the effective width of the reed and p the density
of air. Note that h(t) can not be negative, if h(t) reaches the
zero value then the reed is blocked against the lay of the
mouthpiece and the volume flow u(t) is set to zero too.

The acoustic volume flow and the acoustic pressure in the
mouthpiece are related through the acoustic resonator, the
brass instrument itself, which in the linear approximation
can be represented by an impedance relationship in
frequency domain:

P(w)=Z7,(0)U(®) 3)

where Z;, is the input impedance of the brass instrument.

If the above elementary model is dedicated to both cane-
reed and lip-reed instruments, the values of the parameters
can be significantly different. Indeed the first mechanical
resonance frequency of the cane reed is much higher than
the playing frequencies. The playing frequency of the cane-
reed instruments is mainly controlled by one of the acoustic
resonance frequencies of the instrument itself. As a
consequence, a constant value of 1600 Hz is used in
simulations. On the other hand, the mechanical resonance
frequencies associated with the brass player's embouchure
are crucial in order to get the right note associated to one of
the many acoustical resonances of the brass instrument; in
other words the brass player by, controlling his
embouchure, is able to modify its mechanical resonance
frequency to fit it around the acoustic resonance he wants to
play. The great variability of the brass player's embouchure
implies a great variation of the mechanical resonance
frequency which follows the playing frequency in order to
select a tune from low register until high register four
octaves higher! As a consequence, a set of different values
close to the wanted playing frequencies are used in
simulations of lip reed instruments.

Fletcher [3] followed Helmholtz's pioneering work [4] in
identifying cane-reed and lip-reed instruments as an inward
or an outward striking reed, when the reed is considered as
a simple one degree of freedom mechanical system as in Eq
(1). These two kinds of striking reeds correspond to a
positive or negative value of p in Eq. 1 respectively. If
cane-reed instruments are always considered as inward
striking reed (p>0) in the literature, the lip-reed does not
have such a definitive classification (see the detailed
discussion in Campbell [5] for example). In our study, we
assume that lip-reeds behave like outward striking reeds

(1<0).

Approximate periodic solutions of the elementary model
will be obtained by using the time domain simulation
method described in detail in Gazengel [6], method adapted
from Schumacher’s work [7].

3 Results

3.1 Measured input impedances

Input impedances of a trombone and a saxhorn have been
measured using the impedance sensor described in Dalmont
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and Bruneau [8]. Fig.2 presents the measured input
impedance curves (magnitude and phase) of a trombone
and of a saxhorn. On one hand, the saxhorn curve exhibits
a set of resonances whose frequencies are close to a
complete harmonic series, and that is the consequence of its
bore geometry close to a conical shape. On the other hand
the trombone curve mainly exhibits a harmonic series too,
apart from the lowest impedance peak, and that is the
consequence of its bore geometry far from an ideal cone
(see for example Campbell and Greated [9]). The problem
is inherent in the relative proportions of cylindrical and
flaring sections: the cylindrical portion of the tube tends to
give intervals which are too wide, and the flaring section
does not occupy a sufficient fraction of the total length to
completely override this tendency!
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Fig.2 Measured input impedance (magnitude in dB and

phase in radian) versus frequency of a trombone in first

position (solid line) and of a saxhorn without any valves
depressed (dashdot line).

Resonance | Resonance frequency in Hz
frequency
number trombone saxhorn
br. cl. br. cl.
1 38 38 62 62
2 112 | 112 | 114 | 114
3 170 | 170 | 174 | 174
4 228 | 228 | 232 | 232
5 290 | 292 | 284 | 286
6 342 | 346 | 348 | 350
7 400 | 404 | 404 | 408
8 458 | 464 | 462 | 468

Table 1 First height resonance frequencies of a trombone
and a saxhorn fitted with a brass mouthpiece (br.) or a
cylindrical tube equivalent to a clarinet mouthpiece (cl.).
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First the brass instruments have been measured by using
their own mouthpiece (Fig.2). Secondly, they have been
measured by using a cylindrical tube in place of their own
brass mouthpiece. The cylindrical tube has been chosen in
order to be equivalent to a clarinet mouthpiece. The
resonance frequencies extracted from the two sets of input
impedance measurements are shown in Table 1. Replacing
the brass mouthpiece by a cylindrical tube equivalent to a
clarinet mouthpiece does not influence drastically the
values of the resonance frequencies.

3.2 Pedal notes and experiments

A brass player played a tenor trombone (in first position)
and a saxhorn (no valve depressed) in order to get the first
four periodic regimes. Their fundamental frequencies are
estimated and given in Table 2 (columns “br”). The first
regime, corresponding to the Bb pedal note, is played at
59Hz with the two brass instruments. If the pedal note
played with the saxhorn is close to its first resonance
frequency (62 Hz in Table 1, column “saxhorn — br”), the
one played with the trombone is far from its resonance

frequency (38 Hz in Table 1, column “trombone — br”)
which is a fifth below.
Periodic Playing frequency in Hz
regime
number (measurement)
trombone saxhorn
br. cl. br. cl.
(Fp/Fres)
1 59 (1.55) 38 59 57
2 117 (1.04) 111 | 110 0
3 176 (1.04) 0 176 | 174
4 233 (1.02) 0 233 | 231

Table 2 Playing frequencies (in Hz) of a trombone and a
saxhorn fitted with a brass mouthpiece (br.) or a clarinet
mouthpiece (cl.), obtained by experienced wind instrument
players. If the periodic regime is not playable, the value 0 is
reported in the Table. Ratio between the playing frequency
Fp and the corresponding acoustical resonance frequency
Fres (in brackets).

Movies corresponding to the played notes (analyzed table
2) are available on the conference CD.

In order to reproduce Bouasse’s experiment, a second set of
notes are played with the two brass instruments after
replacing their own mouthpieces with a clarinet

mouthpiece. Now the brass instruments are not driven by a
player’s vibrating lips anymore, but by using a vibrating
clarinet cane reed. If the first regime, the lowest one, is easy
to play with the two brass instruments, the upper regimes
are difficult to play. By using the spit valve (water key) of
the brass instrument as a speaker key (register hole), the
periodic regime number 2 has been obtained with the
trombone (see Table 2, column “trombone — cI”), and the
regimes number 3 and 4 with the saxhorn (see Table 2,
column “saxhorn — cl”). Comparing all the fundamental
frequencies obtained from the clarinet mouthpiece (Table 2,
columns “trombone and saxhorn cl”) with the
corresponding resonance frequencies (Table 1, columns
“trombone and saxhorn — cl”), it can be noticed that playing
and resonance frequencies are close together. The Bouasse
experiment is reproduced. There is no mysterious regime of
oscillation anymore.

3.3 Pedal notes and simulations

cl. br.

Effective reed 0.01 0.014

width [m]

Opening height at 0.0005
rest (when P,=0)

[m]

0.00058

Input radius of 0.0075 0.012

the mouthpiece

[m]

Damping 1.5

parameter g [s™']

Reed effective -0.28 0.0360
mass per area
parameter n

[kg.m™]

Reed frequency 1600 from 60 to 260

0,/27 [Hz]
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Table 3 Simulation parameters. The two sets of parameters
correspond to a simulated brass instrument fitted with a
brass mouthpiece (br.) or a clarinet mouthpiece (cl.).

Simulations of periodic trombone regimes have been
carried out using the parameter’s values listed Table 3, and
a wide band input impedance measurement (up to 4096
Hz). Two kinds of simulations have been done: the valve
effect being controlled by a cane-reed system first (column
cl. in Table 3), and by a lip-reed system (column br. in
Table 3). Note that because the pedal note of the saxhorn
does not behave as a “mysterious regime”, no saxhorn
simulation results are reported in the present paper.

As far as the cane-reed trombone simulation is concerned,
the playing frequency (fundamental frequency of the
periodic regime) obtained is 36 Hz (see column cl. in Table
4) close to the first measured resonance frequency of 38 Hz
(see Table 1). It corresponds to the lowest periodic regime,
and can be compared with the lowest note played with the
trombone fitted with the clarinet mouthpiece. Without any
surprise, the simulated playing frequency is slightly lower
than the resonance frequency because of the inward striking




reed hypothesis (p <0), and does not drastically depend on
the reed frequency value (1600 Hz here). The upper
regimes have not been simulated. These results are
qualitatively compatible with results from simulations of
clarinets or saxophones.

As far as the lip-reed trombone simulation is concerned, the
lip-reed resonance frequency is not set to a particular value,
but varies over a wide range (from 60 to 260 Hz here) in
order to reproduce the brass way of playing: the brass
player is able control the periodic regime by adjusting his
embouchure. By varying the lip-reed frequency from 60 to
260 Hz, four different regimes have been simulated.
Frequency gaps that represent the regime transition are
found. For each of the four simulated regimes, the one
playing frequency given (column br. in Table 4)
corresponds to the simulation where the RMS pressure is
locally a maximum. They have been obtained with the
following values of lip-reed frequency: 60, 100, 145 and
200 Hz respectively.

Peripdic Playing frequency in Hz
regime
number (simulation)
Trombone
br. cl.
(Fp/Fres)
1 86 (2.26) 36
2 148 (1.32)
3 205 (1.41)
4 323 (1.42)

Table 4 Simulated playing frequencies (in Hz) of a
trombone fitted with a brass mouthpiece (br.) or a clarinet
mouthpiece (cl.). Ratio between the playing frequency Fp
and the corresponding acoustical resonance frequency Fres
(in brackets).

As far as the simulated regime number 2, 3 and 4 are
concerned, the playing frequencies F, (148, 205 and 323 Hz
in Table 4) are drastically higher than the corresponding
measured resonance frequency F. (112, 170 and 228 Hz in
Table 1). The F,, values are higher as a consequence of the
outward striking reed hypothesis (u >0). The large
difference between F, and F, illustrated by a frequency
ratio Fy/F.s from 1.32 to 1.42 (Table 4), may be the
consequence of a non optimal choice of the simulation
parameters. If the first simulated regime was mainly driven
by the first acoustic resonance (F.;=38 Hz) in the same way
as the regime numbers 2, 3 and 4 are driven by the
resonance frequencies 2, 3 and 4, the playing frequency
should be found between 50 and 55 Hz keeping the
frequency ratio F,/F in the range [1.32-1.42]. But the
simulation of the first regime, the simulated “pedal note”,
leads to a playing frequency of 86 Hz. One may note that
by using the ratio F,/F. in the range [1.32-1.42], a
fictitious resonance frequency between 60 and 65 Hz is
obtained. This fictitious frequency fits quite well as the first
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“harmonic” of the quasi-harmonic resonance series of the
trombone set of resonances (from 112 Hz, the 2™
resonance, to 458 Hz, the 8" resonance in Table 1). Then
the simulation tool based on the elementary model
described chapter 2 is able to generate the pedal note of a
trombone, this “mysterious regime of oscillation” which is
not mainly lead by the first resonance frequency of the
instrument.

3.4 Concluding remarks

Cane-reed and lip-reed instruments are musical instruments
in which sound is produced by self-sustained oscillations of
the mechanical valve, reed or lips, destabilized and then
driven by the air flow. Useful information about the nature
of the destabilization process and the near-threshold playing
behavior can be obtained from study of a linearized model
which takes into account only a single acoustic resonance
coupled to a single mechanic resonance (see for example
Cullen [10]). The linear stability analysis can be a valuable
first step to get realistic values of the periodic regimes
fundamental frequencies. As far the brass instruments are
concerned, all the periodic regimes in the Bb harmonic
series of the saxhorn (and probably of the other conical
brass instruments) can be approached by the linear stability
analysis. And it is the same for almost all the periodic
regimes in the Bb harmonic series of the trombone (and of
the other cylindrical brass instruments probably). The
trombone pedal note is the exception, in the sense it is a
“mysterious regime of oscillation”. Bouasse’s experiment
told us that the trombone pedal note is not an exception
anymore if the vibrating lips are replaced by a single reed!

Prediction of the large amplitude behavior of self-sustained
oscillations needs more than a linear stability analysis
applied to the physical model. One needs to investigate its
periodic solutions. The preliminary study discussed in the
present paper shows that an elementary model of reed
instruments exhibits the pedal note regime among the
periodic solutions. This result gives a quantitative
illustration of the multiple-mode cooperation [1] leading to
mysterious regimes of oscillation. This preliminary study
needs further and more systematic work. For further studies
of the simulation method based on modal decomposition
[11] would be an attractive tool to investigate the pedal note
regime. This method could be used to do a numerical
morphing from a resonator having a set of harmonic
resonances (saxhorn-like resonator) to a set of incomplete
harmonic peaks (trombone-like resonator) by slightly
moving down the first resonance frequency out of the
harmonic series.
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