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A top-down physical principle called virtual discontinuity principle of diffraction is applied to waves diffracted by a 
wedge. In the analysis diffracted waves are described by a sum of two more fundamental quantities called 
elementary diffracted waves and the physics of wedge diffraction is made clear in terms of the elementally diffracted 
waves. In addition their simple structure in the far field enables us to reproduce the far field rigorous solutions of 
waves diffracted by the wedge. Thus the principle is justified firmly by this result. 

 
 

1 Introduction 
We have proposed a new physical principle that is called 

virtual discontinuity principle of diffraction (abbreviated by 
VDPD) for analyzing waves diffracted by an obstacle [1]. 
Since VDPD is a top-down principle, it has been justified by 
the fact that the relation for diffracted waves by VDPD 
always satisfies the boundary condition at the surface of the 
obstacle. This property is not supported by other principles 
for analyzing diffracted waves, for examples, Kirchhoff’s 
formula and Boundary Element Method.  

In this paper VDPD is applied to waves diffracted by a 
wedge to make the physics of wedge diffraction clear. The 
main feature of VDPD lies on the assertion that waves 
diffracted by the apex of an obstacle are expressed by a sum 
of two more fundamental quantities that are called 
elementally diffracted waves. Since the wedge has one apex, 
it is suited to study the properties of elementally diffracted 
waves. And the potential in the wedge can be expressed by 
geometrical optics waves and elementally diffracted waves 
so that the role of elementally diffracted waves is quite 
understandable. Thus the physics of wedge diffraction is 
made clear in terms of elementally diffracted waves. In 
addition the elementally diffracted waves have simple 
structure in the far field and it enables us to reproduce the far 
field rigorous solutions of waves diffracted by the wedge. 
Thus VDPD is justified further by this result. 
  This paper is organized as follows. In Sec.2 a virtual 
space is formulated by incorporating mirror images reflected 
by edges of wedge into the space and the potentials in it are 
defined using the property of mirror reflection. In Sec.3 the 
Green’s theorem is applied to the virtual space and the 
resulting relations make the physics of wedge diffraction 
understandable in terms of elementally diffracted waves. In 
Sec.4 elementally diffracted waves are derived in the far 
field and the rigorous solutions for diffracted waves are 
reproduced from them. A short summary is given in Sec.5. 

2 Formulation of a virtual space 
2.1 Physical description of a wedge 
   Let us draw a half line L0 in the 2D space and denote the 
starting point as Q as shown in Fig.1 and introduce the polar 
coordinate system r=(r,θ) by specifying r as a distance 
measured from Q and θ as an angle measured from L0  in the 
anticlockwise direction. Let W0 be a wedge of  

 
Fig.1 Configuration of a wedge. 
 
angle 2Ф and defined by  

},0|),{(0 Φ≤≤Φ−≥= θθ rrW ,                 (1)   

where 0<Ф≤πand Ф=π corresponds to an semi-infinite 
plane, Ф>π/2 a concave wedge, Ф<π/2 a convex wedge 
and Ф=π/2 a reflecting plane. The apex of W0 lies on Q and 
W0 is bounded by two edges AE0 and CE0

 . Let us denote an 
half line that starts from Q and runs in the θ direction as L(θ). 
Then the edges can be specified as AE0

 =L(Ф) and CE0
 

=L(-Ф) and let us denote the former as the anticlockwise 
edge and the latter as the clockwise edge.  
2.2 Sound field 
   The waves propagating in W0 are stationary in time and 
satisfy the following relation 

),(22
Srr −−=+∇ δUkU                         (2) 

where U stands for the potential of waves, k the wave 
number, δ the delta function, rS=(rS,θS) the position vector of 
the point source S and the relations 0<rS<∞ and -Ф<θS<Ф 
hold. In the free sound field S radiates the direct waves 

),4/(|)|(H),( )2(
0 jkU F

SS rrrr −=                  (3) 

where UF stands for the direct waves from S, H0
(2) the 0-th 

order Hankel function of the second kind, j the imaginary 
unit and the stationary time function exp(jωt) is deleted 
where ω stands for the angular frequency. 
   The observation point O plays an important role in this 
paper and its position vector is denoted by rO = (rO,θO) and it 
belongs to W0. The potential is expressed as a function of rO 
or r, that is, U(rO) or U(r). In the wedge diffraction the 
distance information is often unimportant and in this case the 
potential may be expressed as a function of θO or θ.  
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As to the boundary condition, the Dirichlet condition 
(∂U/∂n=0) or the Neumann condition (U=0) is set to edges 
of the wedge where n stands for an inner unit vector normal 
to the edges. Let us denote the wedge that satisfies the 
Dirichet condition as the hard wedge and the Neumann 
condition as the soft wedge. The edge of the hard wedge can 
be regarded as a mirror of m=1 where m stands for the 
reflection coefficient of the mirror. Similarly the edge of the 
soft wedge can be regarded as a mirror of m=-1. 

The diffracted waves can be considered as a deviation 
from the geometrical optics waves. Then the potential can be 
expressed as 

),()()( rrr DG UUU +=                           (4) 

where UG stands for the potential for the geometrical optics 
waves and UD that for the diffracted waves. In this paper a 
new field quantity that is called elementary diffracted waves 
is introduced by 

,/)())((),(
)(

ll l dUrkgrU
L

E
Enr ∂∂+−= ∫ θ

θ          (5) 

where UE stands for the potential for the elementary 
diffracted waves, ℓ the coordinate taken along L(θ), rℓ the 
position vector of a point on L(θ), nE an unit vector in the 
anticlockwise direction normal to L(θ), g the Green’s 
function that is given by 

).4/()()( )2(
0 jxHxg =                            (6) 

The model for wedge diffraction described in this paper is 
formulated in terms of UE and it can be calculated using U in 
W0 as seen in Eq.(5). Physically, however, UE is considered 
as a contribution of U on L(θ) to a point located at (r,θ+π) 

as shown as OE in Fig.1. Thus if OE should be kept in W0, it 
would be necessary to draw L(θ) in the area outside W0.  
2.3 Extension of a wedge space 
   Let us extend a wedge space beyond the edges by 
incorporating mirror images reflected by the edges in the 
space, that is, the edges AE0 and CE0 are considered as 
mirrors and mirrored images are assumed to be spread out 
beyond the edges. The wedges W1,W2,W3,... are spread out 
beyond AE0 and the wedges W-1,W-2,W-3,... are spread out 
beyond CE0 as shown in Fig.2. Let us express these wedges 
by Wi where i stands for an integer and |i| corresponds to the 
reflection number. The wedge Wi is bounded by L((2i+1)Ф) 
and L((2i-1)Ф) and let us denote the former as AEi and the 
latter as CEi. If a point in W0 specified by (r,θ*) is imaged to 
a point (r,θ) in Wi by mirror reflections, then the following 
relation  

,2*)1( Φ+−= iiθθ                              (7) 

holds. Let us denote θ* as the original angle of θ. Then the 
wedge number i and the original angle θ* for any angle θ 
can be assigned by the following relations 

 
Fig.2 Formulation of a virtual space. 
 

)9(),2()1()(*
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Φ−−==

+Φ==
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di

i θθθ
θθθ

  

where int(x) and sgn(x) are functions that show the integral 
part and sign of the real number x respectively. Then the 
potential at (r, θ) can be assigned by the following relation 

*),,(),( θθ rUmrU i=                           (10) 

where i and θ* are calculated by Eqs.(8) and (9) and mi 
reflects the amplitude reversal in case of the soft wedge 
(m=-1). Since the original angle is symmetric with respect to 
the edge, U(θ) in the hard wedge is symmetric with respect 
to the edge and antisymmetric in the soft wedge. According 
to the boundary conditions, that is, ∂U/∂θ=0 for the hard 
wedge and U=0 for the soft wedge, the continuity of U and 
∂U/∂θ at the edge holds for hard and soft wedges. Similarly 
the following relation holds for the elementally diffracted 
waves 

.*),()(),( θθ rUmrU EiE −=                     (11) 

Consequently UE(θ) in the hard wedge is antisymmetric with 
respect to the edge and symmetric in the soft wedge. The 
continuity of U E and ∂UE/∂θ at the edge also holds for hard 
and soft wedges since at the edge U E=0 is immediately 
obtained from Eq.(5) for the hard wedge and ∂UE/∂θ=0 can 
be also derived for the soft wedge. Thus U and U E are 
extended beyond the edges continuously. 
   For the sake of later references, let us denote the mirror 
image of S in Wi as Si and its position vector as rSi=(rS,θSi), 
then  

Φ+−= iS
i

Si 2)1( θθ                            (12) 

holds and the direct waves from Si is expressed as 

),4/(|)|(H),( )2(
0 jkmU i

i
i

F
SS rrrr −=              (13) 

where in the case of i=0 this relation is reduced to Eq.(3) 
since S0 =S.  
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2.4 Formulation of a virtual space V  
   A virtual space V is defined as a space that can be 
observed by O where mirrored images are assumed to be 
spread out beyond the edges. Let us introduce a half line 
D=L(θO+π), that is, a half line that starts from Q and runs 
in the direction of θO+π as shown in Fig.2. If O is rotated in 
the anticlockwise direction until it touches D, the contact 
takes place in Wp where p=d(θO+π) is a nonnegative integer. 
Let us express D running in Wp as DA and a wedge bounded 
by CEp and DA as Wp

D and call it as a partial wedge truncated 
by DA. Similarly if O is rotated in the clockwise direction, it 
touches D in Wn where n=d(θO-π) is a nonpositive integer. 
Let us express D running in Wn as DC and a wedge bounded 
by AEn and DC as Wn

D . Then the virtual space V can be 
formulated by 

.)( 1
1∑ −
+= ∪∪∪= p

ni i
D

n
D

p WWWV                   (14) 

If either p=0 or n=0 holds, the third term of Eq.(14) becomes 
zero. The potentials on DA and DC are different for most 
cases and the potential in V is not continuous along D. 
Accordingly it has been called as a virtual discontinuity line. 

3 Wave analysis in the virtual space 
   The Green’s theorem is applied to V to derive a new 
expression for U in terms of UE and the properties of 
diffracted waves are analyzed using the new expression. 
3.1 Application of Green’s theorem to V 
   Let us draw a closed curve Ci in Wi for i=n,...,0,..,p as 
shown in Fig.2. Each Ci is composed by two circular arcs of 
radius ε (ε<<1) and γ (γ >>1) respectively and two segments 
connecting these arcs along the edges. The centers of 
curvature of arcs lie on Q and the radii ε and δ are common 
for all Ci . Then the following relation is obtained by 
applying the Green’s theorem to Ci 

)15(,0/)(|)|(

/|)|()(

=∂∂−−

∂−∂∑ ∫=

lll

ll

dUkg

kgU

O

O
p

ni Ci

nrrr

nrrr
  

where a circle of very small radius centered at O is included 
in C0 and that centered at Si in Ci . If Sn is not included inside 
Cn, no circle is added to Cn. The same story holds for Sp and 
Cp. As seen in Fig.2, two integral paths run parallel to the 
edge, that is, one in Ci and the other in Ci+1 (i=n,…,p-1). 
Since the potential is continuous at edges, these pairs of 
integrals are cancelled out each other. And there remain the 
integrals along DA and DC since D is the only edge in Fig.2 
where the potential is discontinuous. In this case O lies on 
the extension of D and the relations  

.0/,|| =∂∂+=− nrr O grOll                    (16) 

Hold. Thus at the limits of ε→0 and γ→∞, the integrals 
along DA and DC can be expressed as –UE(rO,θO+π) and 
UE(rO,θO-π) respectively and the integrals along the arcs 
become zeros. Consequently Eq.(15) can be rewritten as 

)17(

),,(),(),(

),(),(),(),()(
1

1 πθπθ −++−+

+=

∑ −
+= OO

E
OO

Ep
ni i

F

n
FD

nnp
FD

pp

rUrUU

UWSFUWSFU

SO

SOSOO

rr

rrrrr

 

where the direct waves are resulted from the integrals along 
the small circle centered at Si and F(Sp,Wp

D) takes 1 if Spє 
Wp

D and 0 otherwise. Eq.(17) is the expression of the 
potential of waves in the wedge in terms of the elementally 
diffracted waves. The function F is included in Eq.(17) since 
the sources Sn and Sp may not be included in the truncated 
wedges. The sum of the first three terms in Eq.(17) 
comprises the geometrical optics waves. Then as seen from 
Eqs.(4) and (17) the diffracted waves is expressed by the 
sum of the fourth and fifth terms in Eq.(17), that is, 

,)()()( πθπθθ −++−= O
E

O
ED UUU O            (18) 

where rO is deleted in the expression for simplicity.  
   The physics of wedge diffraction is quite clear in 
Fig.(17). The first term in Eq.(17) changes discontinuously 
whenever Sp crosses DA but this jump is compensated by the 
fourth term so that the potential changes continuously. The 
same story holds for the second term and it is compensated 
by the fifth term. The diffracted waves are expressed by the 
sum of the fourth and fifth terms as shown in Fig.(18). 
Accordingly the physics in wedge diffraction has been 
unclear in the convention theory of diffraction. Eq.(18) can 
be rewritten in terms of the original angles as 

)19(,)*)(()(

)*)(()()(
)(

)(

πθ
πθθ

πθ

πθ

−−+

+−−=
−

+

Ed

EdD

Um
UmU

  

where Eqs.(8),(9),(11) are used and in case of the soft wedge 
UD depends only on the original angles. 
3.2 Properties of diffracted waves 
   Let us introduce new variables x,yA,yC,b as follows 

)20(,2/
,/*)(,/*)(

,/

Φ=
Φ+=Φ+=

Φ=

π
πθπθ

θ

b
yy

x

CA  

where angles are normalized by Ф and the parameter b is 
used to describe the wedge shape from now on. Then the 
following relations  

,)2/)2sgn(2/int()(
),2/)2sgn(2/int()(

,))(22()1()(

)),(22()1()(
)(

)(

bxbxxn
bxbxxp

xnbxxy
xpbxxy

xn
C

xp
A

−+−=
+++=

−−−=

−+−=

            (21) 

are derived from Eq.(8) and Eq.(9). And Eq.(19) can be 
rewritten as 

.))(()())(()()( )()( xyUmxyUmxU C
Exn

A
ExpD −+−−= (22) 

Let take x along the horizontal axis and yA and yC along the 
vertical axis as shown in Fig.3(a) and examine the relation 
between them graphically. As seen from Eq.(21), the 
following relations  
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                      (23) 

hold at x=0. Then in the neighborhood of x=0 the following 
relations  

,)(
,)(

00

00

yxmxy
yxmxy

C

A

−=
+=

                           (24) 

hold until either |yA| or| yC| becomes greater than 1 where 
m0=(-1)p(0) and m0 and y0 are shown in Fig.3(b) as a function 
of b. The two lines described in Eq.(24) are parallel to each 
other and the slope of the line is either 1 or -1 as seen in 
Fig.3(b). As a result of this inversion, the two lines cross at 
x=1 and x=-1 as shown in Fig.3(a). Thus yA and yC draw a 
rectangle that is inclined to either 45˚ or 45˚ and inscribed to 
a square of edge length 2 and centered at the origin.  
3.3.1 Boundary condition 
   As mentioned in the previous section, the two original 
angles cross at θ=±Ф, that is, when O lies on the edges. Then 
as seen from Eq.(22), UD=0 holds at the edges of soft wedge 
(m=-1), that is, the Neumann boundary condition is satisfied. 
In the case of the hard wedge (m=1), the two terms in the 
right side of Eq.(22) become the same at the edges since the 
reflection numbers p and |n| are different by 1. Thus the 
Dirichet boundary condition ∂UD/∂θ=0 is satisfied at the 
edges of hard wedge. Consequently it becomes clear that the 
boundary conditions are satisfied in Eq.(22). It is the 
necessary condition that the expression for diffracted waves 
should satisfy but no conventional expressions have satisfied 
it so far. 
3.3.2 Nondiffractive wedge 
    Let q be a natural number (q=1,2,… ). If b=q holds, 
y0=0 is resulted from Eq.(23) and Eq.(24) becomes 

,)()( 0 xmxyxy CA ==                          (25) 

and the reflection numbers do not change for |x|≤1. Then as 
seen from Eq.(22), UD≡0 holds, that is, the diffracted waves 
are identically zero for the soft and hard wedges. Let us 
denote the wedges that satisfy b=q as the nondiffractive 
wedges and b=1 corresponds to a reflecting plane and b=2 to 
a concave wedge of Ф=π/4. This is the well-known result 
but in the conventional analysis of diffracted waves this fact 
is useless since there are no diffracted waves in these wedges 
[2]. In this analysis, however, they are very useful since UE 
does exist in them and the potential in them can be expressed 
by the geometrical optics waves. 
3.3.3 Symmetry of diffracted waves 
    If b=(2q-1)/2 , that is, b=1/2.3/2,… holds, y0=±1 is 
resulted from Eq.(23) and the rectangle changes to a lozenge 
as seen in Fig.3(a). Then yA and yC become symmetric with 
respect to x=0 and UD in the soft wedge  

 

Fig.3 (a) two original angles for b=0.5,0.75,1.0,1.25,1.50. (b) 
y0 and m0 for yA as a function of b. 
 
becomes symmetric with respect to x=0 and that in the hard 
wedge antisymmetric. As seen from the diamond shape in 
Fig.3(a), UD(0) is expressed by the sum of UE(1) and UE(-1) 
and they are the boundary values of UE as discussed in the 
section 2.3. Thus UD=0 and ∂UD/∂θ=0 hold at x=0 for the 
hard and soft wedges respectively. These are the necessary 
conditions to maintain the continuity of the symmetric UD . 

4 UE in the far field 
   In order to perform the integral given by Eq.(5) to derive 
the analytical expression of UE, let us assume the 
nondiffractive wedge and express the potential as the sum of 
the direct waves from the source Si, that is, 

),,()( 12
0 Sirrr ∑ −

== q
i

FUU                        (26) 

where b=q and rSi is given by Eq.(12). Let UEF be the 
potential resulted by replacing U(rℓ) in the integrand of 
Eq.(5) by UF(rℓ,rS), that is, 

./),())((),(
)(

ll l dUrkgU
L

FEF
ESS nrrrr ∂∂+−= ∫ θ

 (27) 

Let us assume that O and S are placed in the far field of the 
wedge, that is, r, rS → ∞ , then Eq.(27) becomes 

),)(2/()(exp(

),2/)cot(()4/(),(
2/1

SS

S
EF

rrkjrrjkR

RU

π
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+−=
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            (28) 
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where R is the normalization factor and the following 
approximations  

).4/3exp()/2()(

),4/exp()/2()(
2/1)2(

1

2/1)2(
0

ππ
ππ

jjxxxH
jjxxxH

+−≈

+−≈
            (29) 

are used. Then UE in the nondiffractive wedge of b=q can be 
calculated as 

).2/)cot(()4/()( 12
0 θθθ −−= ∑ −

= Si
q

i
iE mRU          (30) 

If Eq.(12) and the following relation [3] 

∑ −
= =+1

0 )cot()/cot(q
i qxqxqiπ ,                  (31) 

are used, then Eq.(30) can be rewritten as 

)32()}.4/)(tan(
)4/)(){cot(4/()(

Φ++
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θθπθ

S

S
E

m
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Then UE for the hard wedge (m=1) is expressed as 

)33()},2/sin(
)2//{sin()2/cos()2/()(

S

E

x
xxbRU
π
ππθ

−
=

 

and for the soft wedge (m=-1) 

)34()},2/sin(
)2//{sin()2/cos()2/()(

S

S
E

x
xxbRU
π
ππθ

−
=

where the normalized angles x=θ/Ф , xS=θS/Ф and the 
following relation  

)}sin()/{sin()cos(2tancot BABABABA −++=± m (35) 

are used. As seen from Eqs.(33) and (34), UE normalized by 
bR/2 is expressed as a function of x and xS, that is, it is 
independent on b. And it is shown in Fig.4(a) for the hard 
wedge and Fig.4(b) for the soft wedge. The normalized UE 
shows the discontinuity at x=xS and the curves in Fig.4(a) 
and (b) show the almost same behavior near x=xS but 
different at x=±1 as discussed in the section 2.3.. Since the 
amplitude of the source is constant and UE is spread out over 
W0, it would be reasonable to assume that the amplitude of 
UE is proportional to the area of W0 , that is, to b as seen in 
Eqs.(33) and (34). 
    The relations given by Eqs.(33) and (34) are proved to 
hold for b=q, that is, b=1,2,… . It would be natural, however, 
to assume that they also hold for any b≥1/2. Then UD for any 
b can be calculated by inserting UE into Eq.(18) and Eq.(18) 
can be rewritten in terms of the normalized angle and b as 

.)2()2()( bxUbxUxU EED −++−=              (36) 

In the case of the hard wedge the following relation  
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is derived by inserting Eq.(33) into Eq.(36). In the case of  

 

Fig.4 Graphs of normalized UE for xS=±0.5.  
 
the soft wedge the following relation  
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is obtained and these relations agree with the rigorous ones 
literally [4]. The above statement about Eqs.(33) and (34) is 
justified by this agreement. In addition the top-down 
physical principle of VDPD is justified by this calculation 
since complex relations for diffracted waves are reproduced 
by the simple analytical calculation based on the principle. 

5  Conclusion 

  The physics of wedge diffraction is made clear by 
expressing the wave field in terms of elementally diffracted 
waves. The elementally diffracted waves have simple 
structure and the far field rigorous solutions of waves 
diffracted by the wedge are reproduced with the help of this 
simple structure. By this result VDPD is justified as the 
top-down physical principle for analyzing waves diffracted 
by a wedge and probably by a polygon since it is composed 
by wedges. 
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