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It is well known that a tangential discontinuity of velocity (vortex sheet) in the shear flow is unstable. This 
instability is convective i.e. all perturbations of the discontinuity grow exponentially but they are carried away 
by the flow downstream. As a result all the amplitude of sound field generated by the discontinuity will decrease 
at any fixed point. In the present study we consider the problem when a small scatterer is placed near the 
discontinuity. It appears this system can be absolutely unstable under the definite position of the scatterer. It 
means that the appearance of any disturbance of the discontinuity will result in rising of the amplitude of sound 
field at every point of space. The cause of absolute instability is a feedback provided by the scatterer and the type 
of instability does not depend on the size of the scatterer. An absolutely unstable system behaves as an 
autogenerator and radiates tone or multitone sound. So the obtained result explains the possible mechanism of 
noise generation in systems with tangential discontinuities and gives some hints about noise control in such 
systems.  

1 Introduction 

Noise generated by flow with a tangential discontinuity 
(vortex sheet) is frequently associated with instability of the 
discontinuity. The radiation properties of the vortex sheet 
leaving a semi-infinite plate and undergoing a two-
dimensional spatial Kelvin-Helmholtz instability is 
investigated in [1,2]. Note that in the absence of a plate 
such an instability mode of the vortex sheet generates no 
sound. The intensity of generated noise is depended only on 
flow velocity. There are no any certain frequencies 
characterizing a spectrum of generated noise.  
Acoustic tones may be observed in the similar systems with 
feedback [3,4] when vortices going downstream interact 
with an obstacle (reflecting boundary, trailing edge of an 
aperture and so on). As a result of such interaction sound is 
generated, which propagates upstream and induces new 
vortices at the point where flow leaves the plate. In the case 
of instability of flow over apertures (or cavities) it is 
sufficient to find the conductivity )(ωRK  of the aperture 
as a function of the frequency ω  of the motion. 
Instabilities of the aperture flow are determined by poles 

pω  of )(ωRK  in the upper complex frequency plane. If 

0Im >pω  the motion of the flow is absolutely unstable in 
that the smallest perturbation of the flow can cause a 
spontaneous growth of large amplitude motion in the 
aperture. The real parts of the frequencies pω  correspond 
to the Strouhal numbers of self-sustained oscillations. But 
the size of the vortex sheet is limited by the shape of the 
aperture. In the case of the semi-infinite vortex sheet the 
amplitude of the initial perturbation of the flow grows 
exponentially but it propagates downstream so that after all 
amplitude of flow oscillation will decrease at any fixed 
point. In other words the flow is convectivly unstable and 
acoustic tones are not generated. 
In this paper we investigate the stability of the laminar flow 
leaving a semi-infinite rigid plate in the presence of a small 
scatterer placed outside the flow. We consider a two-
dimensional system so that the scatterer is cylindrical. The 
flow has a tangential discontinuity downstream of the plate 
edge. The motion of the discontinuity is usually described 
by means of surface waves traveling on it. A spontaneous 
disturbance of the discontinuity generates sound waves 
which are reflected by the scatterer, return to the 
discontinuity and excite new surface waves. We seek 
eigenfrequencies of the coupled flow-scatterer system and 
the conditions determining the type of the instability. The 

behavior of the system is considered in the linear 
approximation. If the system is absolutely unstable the 
amplitude of discontinuity oscillations will grow 
exponentially in dependence of time. In practice, of course, 
this exponential growth is curtailed by nonlinear 
mechanisms ignored by linear perturbation theory.  

2 Problem formulation 

We consider two-dimensional motion in the ),( zx  plane. In 
the unperturbed state, the fluid in 0>z  is at rest, while that 
in 0<z  streams uniformly with velocity U  along the x-
axe (Fig. 1). A semi-infinite rigid plate lies in 0=z , 

0<x . The dipole scatterer is placed in the point ),( 0 Hx  
in the resting fluid. The dipole momentum is directed along 
the z-axe and perpendicular to the tangential discontinuity. 
The fluid density is ρ  and the sound speed is c . 

When the scatterer is excited by a force impulse its 
equation of motion can be written as 

 )()()( 0 tFtFtMm +=&  (1) 

where m is the mass of the scatterer, M is its dipole 
momentum. The momentum of the cylindrical dipole with a 
radius a  is equal to 22Va , where V  is the velocity of the 
dipole. The scatterer is excited by the force F0 and fluid 
acts on the scatterer by the force F. In the simplest case the 
excited force can be determined as )()( 000 ttftF −= δ . 
Fourier transform of Eq.(1) gives 

 )()( 0
0 ωωω ω FefmMi ti +=−  (2) 

The force )(ωF  can be expressed as )()()( ωωω vZF −= , 
where )(ωZ  is the impedance.  

 
 

Fig. 1. Problem formulation 
 Flow is below a semi-infinite rigid plate, 

a scatterer is in the resting fluid 
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So the solution of Eq. (1) in the time domain is 
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For 0tt >>  the dipole momentum is defined by the 
singularities of the integrand in Eq.(3). The singularities 
with 0Im >ω  will dominate as +∞→t . If they exist the 
dipole momentum will increase as )Imexp(~)( ωttM  
meaning that the system is absolutely unstable. If all 
singularities are in lower half of the complex frequency 
plane the system is convective unstable. 
The equation for eigenfrequencies of the system in the case 
of the dipole with 0=m  we can write in the simplest form 

 0)( =ωZ . (4) 

In order to investigate instability of the considered system 
we have to solve Eq.(4) and find the eigenfrequencies. 
Their imaginary parts define the type of instability. 

3 Impedance of the scatterer 

In order to find the impedance of the dipole scatterer placed 
near the semi-infinite vortex sheet (Fig.1) we consider the 
small dipole source with unit dipole momentum in the point 

),( 0 Hx . The velocity potentials of the resting fluid 
(denoted by index 1) and the moving fluid (denoted by 
index 2) satisfy the equations 
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where ck ω=  is the acoustic wavenumber. 

The pressure 2,1P  and the vertical displacement 2,1η  of the 
fluid are defined by 

 11 ωρϕiP = , (7) 
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The boundary conditions for 0=z  have the following form 

 21 PP = , 0>x , (11) 

 021 ==ηη , 0<x , (12) 

 )(21 xηηη == , 0>x , (13) 

 0)0( =η , 0
0

=
=xdx

dη . (14) 

The ordinary technique applied in the similar problems [5] 
permits to express the solution for the system with a flow 
based on the solution for the system without a flow. So 

using the Fourier analysis we can express the pressure in 
the resting fluid by 

 trd PPPzxP ++=),(1 , (15) 

where the pressure 0P  is the direct field of the scatterer, the 
pressure rP  is the field reflected from the absolutely rigid 
boundary 0=z , and the pressure tP  is the field generated 
by the motion of the discontinuity. The last one is given by 
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where  22
1 ξκ −= k , 22

2 )( ξξκ −−= cUk . 

In two last expressions we have to choose the value with 
0Im 1 >κ  и 0Im 2 >κ . The function )(0 ξg  is the Fourier 

component of the displacement )(xη  in the absence of the 
flow, i.e. under condition 0=U , and is given by 

 ∫= dxexg xiξη
π
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2
1)( 00 , (17) 

where 
00 )()(

=
=

U
xx ηη . 

The solution of the diffraction problem can be found by 
means of Wiener-Hopf analysis [6]. Without flow the 
velocity potential in 0>z  is equal to 

+−= θπϕ sin)()1(
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where kk ImIm <−<<− τψ , 22 k−= βμ , 0Im >μ , 
22

0
2 )()( HzxxR −+−= , )()(tan 0xxHz −−=θ . 

In order to find the impedance of the scatterer )(ωZ  we 
have to consider the dipole with a finite size. Let us assume 
that the dipole scattetrer is a cylinder with a radius a  so 
that Ha <<  and 1<<ka . This situation corresponds to 
incompressible flow which will be considered below. 
The impedance of the dipole placed near absolutely rigid 
boundary at the distance H  ( 1<<kH ) is expressed by 
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The active part of the impedance 0Z  is much smaller than 
the reactive part and can be neglected. Moreover the last 
term in Eq.(19) is small as well, so we can take 

ωρπiZ 20 −= . 

The pressure tP  defines the force tF  acting on the scatterer 
in the following way 
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In the case of small distance between the source and the 
plane edge in comparison with wavelength an 
approximation of incompressible fluid is possible. At this 
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approximation 0→k  and 2
21 ξκκκ −=== . So the 

dipole impedance provided by the flow is given by 
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From Eq.(18) we can find the Fourier component of the 
vertical displacement in 0=z  under condition 0→k  
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Substituting Eq.(22) in Eq.(21) we obtain the dipole 
impedance provided by the flow tZ . 

The integrand in Eq.(21) has two poles ( )i
U

±= 12,1
ωξ . In 

accordance with causality principle the path of integration 
in Eq.(21) must pass below these poles. The integration 
contour may be displaced upwards towards the real axis and 
Eq.(21) may be written in the following form 
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where 1)( =jξγ  if 0)Im( <jξ  and 0)( =jξγ  if 
0)Im( >jξ , RI  is the result of integration along the real 

axis. 

The impedances 0Z  and tZ  define the total impedance of 
the source tZZZ += 0 . 

4 Eigenfrequencies of the system 

The equation for eigenfrequencies of the considered system 
has the simple form 0=Z . Substituting Eq.(19) and 
Eq.(23) in this equation we have 
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Eq.(24) is suitable for calculation of eigenfrequencies. 
Nevertheless this equation could be simplified. First of all 
the numerical estimation shows that the absolute value of 

RIa 2ω  is much less than 1. So we can neglect by RI . Since 
our interest is to determine the condition of absolute 
instability it is important to find the eigenfrequencies in the 
upper half of the ω  plane. For 0Im >ω  only one of two 
poles 2,1ξ  is in the lower half of the ξ  plane. Hence 
Eq.(24) transforms in  

 0)(1 )(
20

2
2 202 =− − Hixieg

U
ai ξκξξωπ . (25) 

Another simplification is possible in Eq. (22). The first term 
in Eq.(22) may not be taken into account because it 
corresponds to the flow without semi-infinite rigid plate. 
Obviously such a system is convective unstable and its 
eigenfrequencies are under the real axis of the ω  plane. As 
we seek the absolute instability we can substitute only 

second term of Eq.(22) in Eq. (25). Putting the 
dimensionless frequency UHp ω= , distance Hxs 0=  
and wavenumber Hb β=  we obtain the final equation for 
the eigenfrequencies of the considered system 
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where the integration is along the real axis.  
The roots of Eq. (26) have been calculated for the scatterer 
size 1.0=Ha . The evolution of three eigenfrequencies 
under increasing distance s  is shown on Fig. 2. The value 
of s  is changing from 0 to 2. We see that at 0=s  all 
eigenfrequencies are below the real axis. Under increasing 
s  (that corresponds to the motion the scatterer 
downstream) they approach the real axis and under certain 
value of s , which is close to 1, cross the real axis. That 
means the system becomes absolutely unstable. 
 

Fig. 2. Eigenfrequencies of the system 
in dependence of parameter s 

5 Conclusion 

The small scatterer can change the nature of the unstable 
motion of flow leaving the rigid plate. The presence of any 
scatterer in the area marked on Fig. 3 makes flow 
absolutely unstable. The obtained result does not depend on 
the scatterer size. From physical point of view it is obvious  
that this result is similar for different types of scatteters 
(monopole, dipole and so on). The role of a scatterer is to 
provide a strong enough feedback to excite surface waves 
traveling on the discontinuity of flow (vortex sheet). 
The obtained result permits to make a conclusion that in 
systems with the fixed beginning of a vortex sheet there is 
an “area of absolute instability”. In order to prevent self-
sustained oscillations of flow and tone noise generation it is 
necessary to avoid backward scattering from this zone.  
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Fig. 3. Areas of convective and absolute instability 
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