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This paper describes an adaptive threshold estimation mechanism for speaker authentication systems. The 
mechanism estimates speaker-dependent thresholds based on successful verifications considering the 
minimization of a cost function. Speaker authentication systems commonly use a threshold to decide whether a 
claimed identity matches a voice-print previously enrolled. Speaker independent threshold is a common option 
but it does not consider specific speaker characteristics that are relevant to achieve better system performance. 
Speaker dependent threshold on the contrary, uses speaker-specific data to estimate individual thresholds but the 
system performance can also suffer from suboptimal threshold conditioned by limited number of true scores. The 
algorithm reported in this paper starts with the speaker dependent threshold and use an adaptive algorithm to 
perform online re-estimation of the initial threshold based on speaker-dependent data. The threshold is re-
estimated in each successful authentication transaction according to a custom-made confidence score. The 
reported technique keep the voice print up-to-date while is less sensitive to score outliers than traditional speaker 
dependent threshold. The algorithm provided a performance enhancement of up to 36.2% when compared to 
traditional speaker independent. An ad-hoc database obtained with a practical system was used involving cell 
and land-line utterances from male and female speakers.  

1 Introduction 

Voice biometric systems are a convenient and non intrusive 
way to authenticate remotely located users. They rely on 
voice prints obtained from enrolment sessions that capture 
unique speaker characteristics. Those unique characteristics 
are recognized when new utterances are authenticated. In 
order to determine the authenticity of a claimed identity, the 
score derived from the verified utterance has to be 
compared with a decision threshold. The threshold selection 
determines the way the speaker authentication system 
(SAS) is operated. The operating point of the SAS can be 
selected to minimize the decision errors such as false 
acceptance and false rejection errors [1][2].  It can also be 
selected to meet certain relationship between the false 
acceptance and false relation rate. In both cases the 
threshold must be optimized to meet the given decision 
criteria. The threshold selection can have two main 
approaches: unique to all the speakers attained to the 
system (speaker-independent, SI) or speaker specific 
(speaker dependent, SD).  
The task of the SAS is reduced to accept or reject identity 
claims based on the utterance provided. For any utterance A 
and a claimed identity l, the SAS must make the decision 
according to the system operating criteria [3]. An optimal 
rule can be defined as: 
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where lAf lA ||

 is the likelihood indicating that the given 

utterance was produced by speaker l and |
|

lAf lA
 is the 

likelihood indicating the it was not. CFA and CFR denote 
the cost of false acceptance and false rejection respectively. 
P( Nl)/P(wMl) is the false acceptance/false rejection 
probabilities ratio. The estimation of the likelihood 
functions is difficult in practice and lead to non-optimal 
decision rules.  
The optimum decision rule in (1) is approximated 
practically with a variety of acoustic features and statistical 
models [2]. Despite a variety of algorithms with excellent 
classification capacity commonly used in SAS, the limited 
data used to train the models often lead to estimation errors 
[4][5]. However, models trained for each client are 
practically used to estimate the likelihood of a match 

between the utterance provided and the claimed identity. 
This likelihood approximates the left hand side (LHS) of 
(1) by 

lA Af
j

||
. Likelihood normalization is then 

implemented to allow for more precise comparisons among 
different speakers [2]. Hence, the likelihood of the 
background model is used as an estimation of the 
denominator of LHS in (1). 
Under these conditions, when an utterance is claimed to be 
from speaker l, a score still exist, according to LHS of (1) 
that can be compared with the specific threshold of speaker 
l as given by the right hand side (RHS) of (1). The problem 
is then focused on finding an optimum threshold that 
minimizes the cost function in the RHS of (1). 
The threshold optimization is often implemented with two 
techniques target-impostor techniques. One approach is 
focused on finding a threshold that minimizes a specific 
cost function. The other approach determines the threshold 
that satisfies a specific false acceptance (FA) and false 
rejection (FR) rates. In this paper a cost based approach is 
pursued in order to minimize the decision errors involving 
FA and FR [7]. 
The main motivation of this investigation is to develop 
algorithms for adaptive management of speaker recognition 
systems. The use of SD threshold is very convenient in 
authentication since exploits specific speaker characteristics 
leading to performance enhancements. However, the 
number of enrolment scores is generally insufficient to 
provide unbiased estimations of SD threshold. This 
motivates the use of authentication scores to re-estimate the 
SD threshold but the identity of such utterances is not 
absolutely certain. This investigation is focused on 
developing a confidence index that can be used to 
determine those “reliable” scores at verification time. The 
re-estimation of SD threshold will rely only of those 
authentication scores that meet certain criteria preventing 
threshold contamination with outliers or false accepted 
impostor data. The convergence to stable SD threshold 
under this re-estimation approach must be optimized since 
the system could take more time to collect the minimum 
number of “safe” scores. Consequently, it requires 
optimizing the convergence process to guarantee adequate 
system performance at all time. 

2 Thresholding 

If S denotes the score of each client and t a corresponding 
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threshold, the probability of accepting false speakers 
(impostors) or rejecting true speakers associated to each 
client j can be stated as: 

t

SijFAj dssftsPtP
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)(     (2) 
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)(    (3) 

where STj and SIj are random variables representing scores 
produced by the SAS in response to a target or an impostor 
utterance with a claim of client j. Terms sf

ijS
 and 

sf
TjS  are their respective density functions. PFAj(t) will 

decrease from 1 to 0 as t increases from -  to , while 
PFRj(t) increases. It is then possible to find a value of t that 
satisfies a relation such as: 

atbPtP FRjFAj      (4) 

where the constant a is restricted to [0..1] and b > 0. A 
special case exists when PFAj(t) = PFRj(t) named EER (equal 
error rate). If Gaussian distributions are assumed [8] for SIj 
and STj, the EER relationships have a close-form expression 
for SD thresholds jEERt ,  
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mm
t ,

     (5) 
m and  represent the mean and standard deviation 
respectively. 

3 Design of confidence measurement 

The confidence measurement should map the authentication 
scores into an index of trust. Scores closed to the SD 
threshold are less confident and must obtain lower scores. 
Authentication scores that deviate from the threshold are 
more confident and must received higher scores. There are 
three main aspects relevant to the design of this 
measurement: (1) the score magnitude that can be 
considered “reliable”, (2) the desired distribution function 
of the index and (3) the implementation of the mapping 
function. 

3.1 Uppers score boundary estimation 

To magnitude of the score that can be considered “safe” are 
not known during enrolment. Only when a number of 
successful verifications have been accomplished a valid 
average magnitude can be estimated. Unfortunately, there is 
not absolute certainty on the identity of the verification 
utterances. Therefore, it is not convenient to rely on these 
utterances unless a confidence measure increase is 
available. An alternative approach is to rely on the 
enrolment utterances. These utterances provide higher 
scores than the authentication utterances as they are 
familiar to the models from the training session. However, 
if a data-based relationship can be established between the 
scores obtained from processing enrolment and verification 
utterances, the expected magnitude of what can be 
considered a “safe” score can be estimated at the enrolment 

session. Fig. 1 shows the average scores for all speakers in 
the database studied. It is observed a consistent 65% 
average ratio between both types of scores. This is observed 
more in details in Fig. 2.   
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Fig. 1 Average enrolment (top) and verification (botom) 
scores. Average is shown for each case.  
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Fig. 2 Score ratio between enrolment and verification. 

Based on these observations, the upper boundary needed to 
develop the confidence score can be obtained as the 65% of 
the average score obtained from enrolment ( REF = 0.65 * 

ENROLMENT).  
 

3.2 Score distribution 

The average distribution function was derived from the 
database studied. All FA scores were analyzed and the 
zones where they were located above the SD threshold were 
documented. 69% of the scores associated with the FA 
cases were located in the 0-0.5 interval above the selected 
threshold for each speaker, 23% were located in the 0.5-1 
range, 6 % lied in the 1-2 range and 2% were above 2. This 
a non-linear score distribution. Intervals closer to the 
speaker threshold are less confident and while the scores 
deviate from the speaker threshold the function 
exponentially increase the confidence. The confidence 
index should be 50% for a threshold equal to the SD 
threshold and change nonlinearly as scores deviate more 
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from the SD threshold. A sigmoid function was appropriate 
to model the score distribution defined as: 

)Ae1/(1y -Bx       (6) 

A allows shifting the function in the x axis; B changes the 
slope and width of the transition band and x control the 
range mapped. Positive increments of x were used to match 
the distribution of the score into confidence interval 
between 50 – 100 %. This is because of the confidence 
index is only given when the resulting score is greater than 
the threshold of the verified speaker. Fig. 3 shows plots of 
the sigmoid function with different values of B with A and 
x constant. B = 2 provides the best modeling option. 
Smaller B values provided pessimistic confidence indexes 
and higher B values provided optimistic scores. 
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Fig. 3 function of the sigmoid function: A=1, x = 5, B= 1, 

2, 2.5 and 3. 

The variable x allows controlling dynamically the score 
range mapped. This range is determined for each speaker as 
a function of the reference score REF, the verification score 
( CS) and the threshold and ( SD). This approach covers the 
total expected range of variation between the scores and the 
SD threshold. It ensures a speaker dependent function that 
is tailored for each speaker and is adaptively updated from 
the speaker dependent threshold. The range is obtained as: 

SDREF

SDCS

t
tx

                   (7) 
Table I shows examples of applying equations (6) and (7) 
with x(tSD, REF, CS) = x(3.07,5.84, CS) and f(x,A,B) = 
f(x,1,B). From this table it can be noticed that the mapping 
function with x  2 produce very optimistic confidence 
scores in the less reliable range. It does not provide a great 
separation between scores that deviates from the less 
reliable range. This separation is required to differentiate 
those utterances with higher than normal scores that are 
suitable to re-estimate the SD threshold. Based on this 
criteria B = 2 provided the best compromise between low 
confidence scores around the speaker threshold and high 
confidence for scores more separated from the threshold.  

3.3 Evaluation of mapping function 

The performance of the function with the testing 
utterances from the database is described in Table II (only a 

small fraction of the database is shown). Any negative 
value of x or confidence score below 50% corresponds to a 
rejected utterance included in this table just for comparison 
purposes but would not occur in normal processing.  

CS = tSD + k x(tSD, REF, CS)
y(x,A,B) k=0 k=0.5 k=1 k=2 k=3 k=4 k=5 

x(3.07,5.84, CS)
y(x, 1, 1.5)% 

0 
50

0.180 
56.7 

0.361 
63.2 

0.721 
74.7 

1.081
83.5

1.442
89.7 

1.803
93.7

x(3.07,5.84, CS)
y(x, 1, 2)% 

0 
50

0.180 
58.9 

0.361 
67.3 

0.721 
80.9 

1.081
89.7

1.442
94.7 

1.803
97.4

x(3.07,5.84, CS)
y(x, 1, 2.5)% 

0 
50

0.180 
61.1 

0.361 
71.1 

0.721 
85.8 

1.081
93.7

1.442
97.4 

1.803
98.9

 

Table 1 Performance of the mapping function  

Notice that for all true speakers shown the confidence 
score is ranging between 75-97% while the confidence of 
impostors is well below 50% (0-29%). Based on this 
performance, the newly developed adaptive confidence 
score provides an accurate measurement that changes 
adaptively while the speaker dependent threshold is 
adapted. This provides an enhanced confidence score that 
contributes to reliably detect utterances that are good for 
updating the speaker dependent threshold. The confidence 
measurement also benefits from any improvement made in 
the SD threshold, forming a closed supervision mechanism 
that continuously tunes unique speaker characteristics. 

SPK 
idx 

x (Conf)
utt. 1 

x (Conf)
utt. 2 

x (Conf) 
utt. 3 

x (Conf) 
utt 4 

x (Conf)
utt 5 

Avg 
Impost 

1. 1.0819 
(0.8967)

1.2124 
(0.9187)

1.0805 
(0.8967) 

1.2402 
(0.9228) 

0.70772 
(0.8046)

-0.75887 
(0.1996)

2. 1.0204 
(0.8850)

0.25238 
(0.6236)

0.93307 
(0.8660) 

0.8329 
(0.8410) 

0.59992 
(0.7685)

-0.64679 
(0.2286)

3. 1.0587 
(0.8926)

0.85372 
(0.8465)

1.159 
(0.9104) 

0.98727 
(0.8781) 

1.0052 
(0.8819)

-0.78744 
(0.1913)

4. 
 

0.84942 
(0.8454)

0.86551 
(0.8495)

0.84833 
(0.8451) 

0.73843 
(0.8141) 

0.89951 
(0.8580)

-0.82165 
(0.1749)

 

Table 2 Example of the performance of confidence function  

Scores with confidence values 75% exhibit a separation 
from the decision threshold in the non-mapped scale of 
60% or more. This suggests that these scores are adequate 
to choose the threshold for SD re-estimation.  

4 Adaptive threshold 

Based on the confidence index, the limited set of true scores 
available to re-estimate the SD threshold can be increased 
with the detected reliable authentication scores. It can be 
achieved with a minimized risk of contaminating the scores 
with impostor data. The re-estimation has the limitation that 
while the number of true scores is not sufficient to converge 
to an optimum threshold the performance of the system will 
fluctuate as the SD thresholds converge. This limitation can 
be minimized by using an adaptive algorithm for the 
threshold re-estimation. The adaptation algorithm starts 
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with the SI threshold computed at design time and 
continuously adapted with the reliable verification scores. 

It is convenient now to estimate the number of successful 
reliable verification scores needed by the SD threshold to 
converge to optimum values. From a previous work 
reported in [2], true-speaker scores were simulated based on 
statistics obtained from the studied database (simulation 
required due to insufficient number of true verifications 
scores in the database). This experiment consisted on 
increasing the number of true scores for each speaker in the 
database (only Pin data was used) from five to  while 
keeping the number of impostors at 50. It was concluded 
that 50% of the total possible improvement using SD 
threshold was achieved with 10 true score varied. A total of 
74% was obtained for 20 true scores and 92% for 50 [2]. 
This shows that to get all the benefit of the SD threshold, 
more than 50 reliable verification scores are necessary. The 
system may require certain amount of time to reach this 
number, especially when only very reliable scores are used 
for re-estimation. Before achieving the optimum threshold, 
the performance of the system can fluctuate creating 
undesired effects. This confirms the necessity to develop an 
adaptive threshold that can adapt the threshold while 
controlling the performance of the system while the 
threshold converges to optimum values. 

A basic Least Square Algorithm (LMS) was implemented 
to adapt the threshold from the SI threshold. The adaptation 
step ( ) was changed from 0 to 1 where 0 corresponded to 
the basic SI threshold and 1 corresponded to the standard 
SD threshold. 

5 Experiment 

An experiment was conducted to compare the performance 
of a speaker verification task using SI, SD and SD adaptive 
thresholds. In both cases the equal error rate given by the 
FA and FR rate was minimized. 
In this work, a real set of scores was used, based on an ad-
hoc database consisting of spoken digits from several male 
and female speakers uttering their pin and telephone 
numbers through telephone lines. A HMM-based text-
dependent SAS was used to estimate the scores. 
Background models were created with a subset from the ad-
hoc database for a group of predefined digits to normalize 
speaker model scores. Each digit was modeled by a left to 
right continuous-density HMM with 11 states and 8 
Gaussian mixtures per state. Speaker models were created 
by adaptation from the background model, using three 
iterations of the MAP adaptation algorithm. During 
verification a speaker score was obtained as the average of 
the normalized log-likelihood ratios of the digits. 

In this experiment the models were trained with four 
utterances (balanced pin and telephone) and tested with 6 
utterances (also with balance composition). A total of 50 
impostors were used for all speakers in the database. The 
initial threshold used was the SI threshold computed to 
achieve a minimum the ERR over all speaker in the 
database. Different adaptation steps were tested in order to 
evaluate the benefits of the adapted SD threshold 
(SDADAPT). Fig. 4 shows the performance improvement of 
SDadapt over SI threshold.  
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Fig. 4 Performance for different adaptation steps 

Adaptation below 0.8 provided a performance enhancement 
with respect to SI threshold with  = 0.45 providing the 
highest system performance enhancement (36.19%). 
Adaptation steps greater than 0.8 decreased the SI 
performance. This is attributed to the limited number of 
scores available which resulted in a biased SD threshold.  

The performance of the system when using the SD 
threshold and the SDADAPT threshold is shown in Fig. 5 and 
Fig. 6. A summary of the system performance is given in 
Table 3.  

 

Fig. 5 System performance obtained with SDADAPT 
threshold 

 

Fig. 6 System performance obtained with SD threshold 
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Thresholds   FAR FRR AER 
SI 2.153 2.301 2.227 
SD 0.876 4.812 2.844 

SDADAPT 0.751 2.092 1.421 
Table 3 System Performance for SI/SD/SDADAPT thresholds 

6 Conclusion 

A performance index was reported that is suitable to 
implement adaptive threshold re-estimation. An adaptive 
algorithm to achieve SD threshold was developed that 
outperformed traditional SI and SD thresholds. The 
performance advantage is more readily appreciated when 
the number of available true scores is limited. The 
combination of both techniques allows continuous 
adaptation of speaker dependent threshold needed to 
manage SAS with a minimized risk of contamination the 
threshold calculation with impostor data.  

The score measurement could also be relevant for other 
tasks related with management of SAS such as template 
adaptation due to long-term variation of speaker and 
channel characteristics.  
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